36 resultados para Capacitor Banks
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This paper presents a comparison of reactive power support in distribution networks provided by switched Capacitor Banks (CBs) and Distributed Generators (DGs). Regarding switched CBs, a Tabu Search metaheuristic algorithm is developed to determine their optimal operation with the objective of reducing the power losses in the lines on the system, while meeting network constraints. on the other hand, the optimal operation of DGs is analyzed through an evolutionary Multi-Objective (MO) programming approach. The objectives of such approach are the minimization of power losses and operation cost of the DGs. The comparison of the reactive power support provided by switched CBs and DGs is carried out using a modified IEEE 34 bus distribution test system.
Resumo:
The high active and reactive power level demanded by the distribution systems, the growth of consuming centers, and the long lines of the distribution systems result in voltage variations in the busses compromising the quality of energy supplied. To ensure the energy quality supplied in the distribution system short-term planning, some devices and actions are used to implement an effective control of voltage, reactive power, and power factor of the network. Among these devices and actions are the voltage regulators (VRs) and capacitor banks (CBs), as well as exchanging the conductors sizes of distribution lines. This paper presents a methodology based on the Non-Dominated Sorting Genetic Algorithm (NSGA-II) for optimized allocation of VRs, CBs, and exchange of conductors in radial distribution systems. The Multiobjective Genetic Algorithm (MGA) is aided by an inference process developed using fuzzy logic, which applies specialized knowledge to achieve the reduction of the search space for the allocation of CBs and VRs.
Resumo:
This paper presents a mixed integer nonlinear programming multiobjective model for short-term planning of distribution networks that considers in an integrated manner the following planning activities: allocation of capacitor banks; voltage regulators; the cable replacement of branches and feeders. The objective functions considered in the proposed model are: to minimize operational and investment costs and minimize the voltage deviations in the the network buses, subject to a set of technical and operational constraints. A multiobjective genetic algorithm based on a Non-Dominated Sorting Genetic Algorithm (NSGA-II) is proposed to solve this model. The proposed mathematical model and solution methodology is validated testing a medium voltage distribution system with 135 buses. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
This work discusses about the effects and methods of control and elimination of the currents transients generated by switching capacitor banks, this currents are called inrush currents. Capacitor banks are widely used to compensate a low power factor generated by the widespread use of inductive loads. Currently many of these banks are automatic and therefore the capacitive cells are connected and disconnected according to the inductive loads on the network. However when connecting a capacitor bank to a bus can generate currents transients generated by electromagnetic transients. Aspects of the network, for example, the existence of a bank already connected to the bus, can influence the intensity of this phenomenon. This paper discusses some characteristics of the capacitors and the network to justify and explain the appearance of these transients and discusses its effects on the network and to other equipment. It is concluded that the main cause of this phenomenon is the voltage difference between the capacitor to be connected to the network and the bus, the results of the study were the bases to discuss the traditional methods to mitigate these currents and therefore its negative effects. Although in this paper is yet developed a method of electronic switching that can greatly reduce these transients
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS