9 resultados para Calibration measurements
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Magnetic susceptibility (chi, mass specific) is useful for easy indirect estimation of other soil properties at a low cost. The aim of this study was to assess the use of chi as measured with an analytical balance for predicting properties with a substantial influence on the management of Typic Haplustalfs in southern Brazil. To achieve this 48 topsoil samples were taken at the intersection points in a rectangular grid of 20 m x 20 m cells, with 38 of these used for calibration and 10 for validation in regression analyses. The obtained chi values were slightly higher than, and highly correlated (r = 0.970; P < 0.001) with those measured with a susceptibility meter. Highly significant (P < 0.001) correlations were also found between chi and other soil properties relevant to soil classification and management such as clay content (r = 0.68), cation exchange capacity (r = 0.62), P sorption capacity (r = 0.76) and haematite content (r = 0.82). Results from a principal component analysis of eight properties important for soil classification explained 11% of the variance in the data set. The good predictive ability of chi was consistent with current knowledge on the formation pathways for pedogenic ferrimagnets. In summary, chi, which can be readily measured with an analytical balance, has the potential for quantifying soil attributes and may therefore be used in pedotransfer functions.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Standardization of measurements for marginal fit of castings is critical. This study describes the fabrication of a device that allowed fixation of specimens on a Toolmakers microscope with identical conditions according to tri-dimensional positioning of specimens, measuring location, and seating force. The device also allows mapping of the marginal discrepancies on the entire marginal perimeter of the tooth preparation.
Resumo:
The University of British Columbia (UBC) began performing piezocone penetration tests (CPTU) with electrical resistivity measurements (RCPTU) in 1989. Since then, RCPTU research at UBC has focused on obtaining geo-environmental parameters such as fluid resistivity and soil engineering properties such as porosity and degree of saturation from measurements of bulk soil electrical resistivity using the empirical relationship proposed by Archie (1942). Within this framework, the paper illustrates and discusses important design and calibration issues for resistivity modules such as the use of isolated circuitry to achieve linear calibrations over large ranges of resistivity. The suitability of RCPTU measurements for determination of geo-environmental and geotechnical parameters are assessed using typical ranges of soil and groundwater properties and methods of isolating individual factors for study are discussed. Illustrative examples of RCPTU research efforts including the environmental characterization of mine tailings, delineation of saline water intrusions in fresh water aquifers and the quality control of geotechnical ground densification are presented throughout the text. It is shown that groundwater temperature and hence ion mobility is not significantly altered by frictional heat generated during piezocone penetration and that ratio-based approaches to monitoring soil porosity can be used to eliminate the requirement for extensive groundwater sampling programs. Lastly, it is shown that RCPTU measurements above the water table can only be made using resistivity modules that are stable over a large range of resistivities and that such measurements are the most difficult to interpret because of grain surface conduction effects and generally unknown fluid resistivities.
Resumo:
Aerodynamic balances are employed in wind tunnels to estimate the forces and moments acting on the model under test. This paper proposes a methodology for the assessment of uncertainty in the calibration of an internal multi-component aerodynamic balance. In order to obtain a suitable model to provide aerodynamic loads from the balance sensor responses, a calibration is performed prior to the tests by applying known weights to the balance. A multivariate polynomial fitting by the least squares method is used to interpolate the calibration data points. The uncertainties of both the applied loads and the readings of the sensors are considered in the regression. The data reduction includes the estimation of the calibration coefficients, the predicted values of the load components and their corresponding uncertainties, as well as the goodness of fit.
Resumo:
The aim of this work is to evaluate the influence of point measurements in images, with subpixel accuracy, and its contribution in the calibration of digital cameras. Also, the effect of subpixel measurements in 3D coordinates of check points in the object space will be evaluated. With this purpose, an algorithm that allows subpixel accuracy was implemented for semi-automatic determination of points of interest, based on Fõrstner operator. Experiments were accomplished with a block of images acquired with the multispectral camera DuncanTech MS3100-CIR. The influence of subpixel measurements in the adjustment by Least Square Method (LSM) was evaluated by the comparison of estimated standard deviation of parameters in both situations, with manual measurement (pixel accuracy) and with subpixel estimation. Additionally, the influence of subpixel measurements in the 3D reconstruction was also analyzed. Based on the obtained results, i.e., on the quantification of the standard deviation reduction in the Inner Orientation Parameters (IOP) and also in the relative error of the 3D reconstruction, it was shown that measurements with subpixel accuracy are relevant for some tasks in Photogrammetry, mainly for those in which the metric quality is of great relevance, as Camera Calibration.
Resumo:
The two fundamental approaches to fission-track dating involve either an explicit determination of the thermal neutron fluence (φ-method) or a calibration against age standards (ζ-method). The neutron fluence measurements are carried out with metal-activation monitors or with uranium-fission monitors, co-irradiated with the samples. Uranium-fission monitors consist of either a thin mono-atomic) film, or a thick fission source (standard uranium glass) irradiated against a muscovite external track detector. In this work, different techniques for performing neutron-fluence measurements were compared: based on thin-film calibration, based on thick-source calibration, and based on gamma spectrometry of co-irradiated metal monitors (Au, Co). The results suggest that more experiments are needed to make all calibrations consistent, including new measurements of the length of etched induced tracks in mica. Also the standard glass calibration carried out with thin films should be confirmed with a greater number of calibrating irradiations. © 2013 Elsevier Ltd. All rights reserved.