8 resultados para CURE FRACTION MODELING
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Cure kinetic model is an integral part of composite process simulation, which is used to predict the degree of curing and the amount of the generated heat. The parameters involved in kinetic models are usually determined empirically from isothermal or dynamic differential scanning calorimetry (DSC) data. In this work, DSC and rheological techniques were used to investigate some of the kinetic parameters of cure reactions of carbon/F161 epoxy prepreg and to evaluate the cure cycle used to manufacture polymeric composites for aeronautical applications. As a result, it was observed that the F161 prepreg presents cure kinetic with total order 1.2-1.9. (c) 2006 Springer Science + Business Media, Inc.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper, we proposed a flexible cure rate survival model by assuming the number of competing causes of the event of interest following the Conway-Maxwell distribution and the time for the event to follow the generalized gamma distribution. This distribution can be used to model survival data when the hazard rate function is increasing, decreasing, bathtub and unimodal-shaped including some distributions commonly used in lifetime analysis as particular cases. Some appropriate matrices are derived in order to evaluate local influence on the estimates of the parameters by considering different perturbations, and some global influence measurements are also investigated. Finally, data set from the medical area is analysed.
Resumo:
Pós-graduação em Engenharia de Produção - FEB
Resumo:
The venom of Crotalus durissus terrificus snakes presents various substances, including a serine protease with thrombin-like activity, called gyroxin, that clots plasmatic fibrinogen and promote the fibrin formation. The aim of this study was to purify and structurally characterize the gyroxin enzyme from Crotalus durissus terrificus venom. For isolation and purification, the following methods were employed: gel filtration on Sephadex G75 column and affinity chromatography on benzamidine Sepharose 6B; 12% SDS-PAGE under reducing conditions; N-terminal sequence analysis; cDNA cloning and expression through RT-PCR and crystallization tests. Theoretical molecular modeling was performed using bioinformatics tools based on comparative analysis of other serine proteases deposited in the NCBI (National Center for Biotechnology Information) database. Protein N-terminal sequencing produced a single chain with a molecular mass of similar to 30 kDa while its full-length cDNA had 714 bp which encoded a mature protein containing 238 amino acids. Crystals were obtained from the solutions 2 and 5 of the Crystal Screen Kit (R), two and one respectively, that reveal the protein constitution of the sample. For multiple sequence alignments of gyroxin-like B2.1 with six other serine proteases obtained from snake venoms (SVSPs), the preservation of cysteine residues and their main structural elements (alpha-helices, beta-barrel and loops) was indicated. The localization of the catalytic triad in His57, Asp102 and Ser198 as well as S1 and S2 specific activity sites in Thr193 and Gli215 amino acids was pointed. The area of recognition and cleavage of fibrinogen in SVSPs for modeling gyroxin B2.1 sequence was located at Arg60, Arg72, Gln75, Arg81, Arg82, Lis85, Glu86 and Lis87 residues. Theoretical modeling of gyroxin fraction generated a classical structure consisting of two alpha-helices, two beta-barrel structures, five disulfide bridges and loops in positions 37, 60, 70, 99, 148, 174 and 218. These results provided information about the functional structure of gyroxin allowing its application in the design of new drugs.
Resumo:
Seasonal variations in the diurnal evolution of the global, diffuse and direct solar radiation at the surface, the clearness index, diffuse fraction and direct fraction are described in detail for the City of Sao Paulo, Brazil. The description is based on measurements of global and diffuse solar radiation carried out over 5.25 years. The diffuse component was measured with a shadow-band device. The annual evolution of the amplitude of the diurnal cycle of all radiometric parameters indicates a seasonal pattern with two distinct periods: autumn-winter and spring-summer. About 10% of the observed period was characterized by clear sky days. This seasonal variation is determined by a larger incidence of clear sky days in the autumn-winter period. Reductions of up to 10% in hourly and daily values of global radiation were observed in conjunction with an increase in particulate matter concentration on clear sky days. The pollution effect may be responsible for the discrepancy, of 16%, found between local and more regional estimates of global solar radiation in Sao Paulo. The diurnal evolution of hourly values of monthly-averaged global and diffuse solar radiation were successfully estimated by the empirical expressions derived here. Daily values of monthly-averaged global solar radiation were satisfactorily estimated using the Angstrom expression.
Resumo:
In this study, we describe the cDNA cloning, sequencing, and 3-D structure of the allergen hyaluronidase from Polybia paulista venom (Pp-Hyal). Using a proteomic approach, the native form of Pp-Hyal was purified to homogeneity and used to produce a Pp-specific polyclonal antibody. The results revealed that Pp-Hyal can be classified as a glycosyl hydrolase and that the full-length Pp-Hyal cDNA (1315 bp; GI: 302201582) is similar (80-90%) to hyaluronidase from the venoms of endemic Northern wasp species. The isolated mature protein is comprised of 338 amino acids, with a theoretical pI of 8.77 and a molecular mass of 39,648.8 Da versus a pI of 8.13 and 43,277.0 Da indicated by MS. The Pp-Hyal 3D-structural model revealed a central core (α/β)7 barrel, two sulfide bonds (Cys 19-308 and Cys 185-197), and three putative glycosylation sites (Asn79, Asn187, and Asn325), two of which are also found in the rVes v 2 protein. Based on the model, residues Ser299, Asp107, and Glu109 interact with the substrate and potential epitopes (five conformational and seven linear) located at surface-exposed regions of the structure. Purified native Pp-Hyal showed high similarity (97%) with hyaluronidase from Polistes annularis venom (Q9U6V9). Immunoblotting analysis confirmed the specificity of the Pp-Hyal-specific antibody as it recognized the Pp-Hyal protein in both the purified fraction and P. paulista crude venom. No reaction was observed with the venoms of Apis mellifera, Solenopsis invicta, Agelaia pallipes pallipes, and Polistes lanio lanio, with the exception of immune cross-reactivity with venoms of the genus Polybia (sericea and ignobilis). Our results demonstrate cross-reactivity only between wasp venoms from the genus Polybia. The absence of cross-reactivity between the venoms of wasps and bees observed here is important because it allows identification of the insect responsible for sensitization, or at least of the phylogenetically closest insect, in order to facilitate effective immunotherapy in allergic patients. © 2013 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)