26 resultados para CRYOPROTECTANT
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The aim of the current study was to verify that stallion, spermatoza could be cooled for 24 hours and then frozen. In experiment I, one ejaculate from each of 13 stallions was used. Semen was collected and split into two parts; one part immediately frozen using standard cryo-preservation techniques and the other diluted, stored in an Equitainer for 24 hours, and then frozen. In experiment II, one ejaculate from each of 12 stallions was collected, diluted with Botu-Semen, and split into two parts: one cooled in an Equitainer and the other in Max-Semen Express without prior centrifugation. After 24 hours of cooling, the samples were centrifuged to remove seminal plasma and concentrate the sperm, and resuspended in Botu-Crio (R) extender containing on e of three cryoprotectant treatments (1% glycerol + 4% dimethylformamide, 1% glycerol + 4% dimethylacetamide and 1% glycerol + 4% methylformamide), maintained at 5 degrees C for 20 minutes, then frozen in nitrogen vapour. No difference was observed between the two cooling systems. The association of 1% glycerol and 4% methylformamide provided the best post-thaw progressive motility. For experiment III, two stallions were used for a fertility trial. Forty three inseminations were performed using 22 mares. No differences were seen in semen parameters and pregnancy rates when comparing the two freezing protocols (conventional and cooled/frozen). Pregnancy rates for conventional and cooled/frozen semen were, respectively, 72.7% and 82.3% (stallion A), and 40.0% and 50.0% (stallion B). We concluded that cooling equine-semen for 24 hours before freezing while maintaining sperm viability and fertility is possible.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The yolk syncytial layer (YSL) has been regarded as one of the main obstacles for a successful cryopreservation of fish embryos. The purpose of this study was to identify and characterize the YSL in Prochilodus lineatus, a fish species found in southeastern Brazil and considered a very important fishery resource. Embryos were obtained through artificial breeding by hormonal induction. After fertilization, the eggs were incubated in vertical incubators with a controlled temperature (28 degrees C). Embryos were collected in several periods of development up to hatching and then fixed with 2% glutaralclehyde and 4% paraformaldehyde in 0.1 M sodium phosphate buffer (pH 7.3). Morphological analyses were carried out under either light, transmission or scanning electron microscopy. The formation of the YSL in P. lineatus embryos starts at the end of the cleavage stage (morula), mainly at the margin of the blastoderm, and develops along the embryo finally covering the entire yolk mass (late gastrula) and producing a distinct intermediate zone between the yolk and the endodermal cells. The YSL was characterized by the presence of microvilli on the contact region with the yolk endoderm. A cytoplasmic mass, full of mitochondria, vacuoles, ribosomes, endomembrane nets and euchromatic nuclei, indicated a high metabolic activity. This layer is shown as an interface between the yolk and the embryo cells that, besides sustaining and separating the yolk, acts as a structure that makes it available for the embryo. The structural analyses identified no possible barriers to cryoprotectant penetration.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Based on dynamic rheological measurements, sucrose, glycerol and magnesium chloride (MgCl2) prevented egg yolk gelation at concentrations of 2% and higher, These additives showed improved cryoprotectant effects as their concentrations were increased, Sodium chloride (NaCl) at higher than 2% also prevented gelation but at 10%, it caused a considerable increase in viscosity of unfrozen yolk, Calcium chloride (CaCl2) showed an opposite effect, promoting protein coagulation before freezing, Samples with 2% CaCl2 gelled completely after 36h at -24 degrees C, Before freezing, potassium chloride (KCl) in the range 2-10% had an effect similar to that of NaCl, However, after freezing its effect changed, Yolk with 2% KCl, frozen 36h at -24 degrees C, showed very elastic behavior.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Cooling of pacu (Piaractus mesopotamicus) embryos at various stages of development for 6 or 10 hours
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Six or 7-day-old equine embryos were divided into 4 groups; Group 1, n = 15, Day 7 embryos destined for immediate transfer; Group 2, n = 15, Day 6 embryos destined for deep-freezing with glycerol plus sucrose as cryoprotectant; Group 3, n = 10, Day 6 embryos destined for deep-freezing with glycerol plus 1,2-propanediol as cryoprotectant and Group 4, n = 3, fresh embryos destined for ultrastructural analysis. All the frozen/thawed embryos were transferred to recipient mares, except 3 embryos in Group 3 that were subjected to ultrastructural analysis. After thawing the cryoprotectants were removed by successive dilutions in PBS + 15% v:v fetal calf serum (FCS) containing decreasing concentrations of the cryoprotectants. Pregnancy was diagnosed ultrasonographically in 53.3%, 13.3% and 0% of the mares in Groups 1, 2 and 3 respectively. Ultrastructural analysis showed differences between frozen/thawed and fresh embryos. In the former, embryonic cells were deformed and showed dilation of the intercellular and perivitelline spaces, a decrease of desmosome number in the junctional complexes, few microvilli on the apical surface of the trophectoderm and an almost total absence of pinocytotic vesicles. Most of the mitochondria showed regions containing dilation and irregularities on the cristae, which appeared electron-dense. The results obtained with Groups 2 and 3 embryos showed that the cryoprotectants employed were not effective in protecting the embryos against damage during freezing and thawing. Indeed, the ultrastructural changes observed in the Group 3 embryos explained the absence of any established pregnancies in this group of mares.
Resumo:
An efficient cryopreservation protocol was developed for mature seeds of Oncidium flexuosum Sims. Seed morphology, protocorm formation, and early seedling development were also assessed. The effects of phloroglucinol and Supercool X-1000® as cryoprotectant additives in the vitrification solution were investigated. Dehydration using the plant vitrification solution 2 (PVS2) for 60 and 120 min prior to immersion in liquid nitrogen promoted the highest frequency of in vitro seed germination 6 weeks following culture on half-strength Murashige and Skoog (1/2 MS) medium. Mature seeds submitted to vitrification for 120 min in PVS2 and 1 % phloroglucinol at 0 °C enhanced germination by 68 %, whereas in PVS2 and 1 % Supercool X-1000® germination was just moderately enhanced (26 %). In vitro-germinating seedlings developed healthy shoots and roots without the use of plant growth regulators. After 6 months of growth, there were no differences between in vitro- and ex vitro-grown seedlings for various phenotypic characteristics, including shoot length, number of leaves, number and length of roots, and fresh and dry weight. Seedlings were transferred to greenhouse conditions and successfully acclimatized, further developing into normal plants with over 90 % survival. Comparative analysis of seedlings from control and vitrified seeds using flow cytometry indicated that no change in ploidy levels occurred as a result of cryopreservation, therefore maintaining seedlings genetic stability. In this study, vitrification with PVS2 for 120 min with the addition of 1 % phloroglucinol offers a simple, safe, and feasible protocol for cryopreservation of O. flexuosum mature seeds. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biologia Animal - IBILCE