6 resultados para CPTU

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a system for performing down-hole seismic test together with the piezocone test in order to determine the shear wave velocity (Vs) and for calculating the maximum shear modulus (Go); a basic parameter for analyzing the dynamic soil behavior and a reference value of the soil stiffness. The system components are described and tests results for checking the geophone response are also presented, both before and after installation into the probe. The system was used in down-hole tests carried out at three experimental research sites located in the interior of Sao Paulo State, Brazil, where in situ seismic test results are available. The Vs values measured in down-hole tests carried out with this system were consistent with those determined in cross-hole tests and with a commercial seismic piezocone, which enabled to validate the developed system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The University of British Columbia (UBC) began performing piezocone penetration tests (CPTU) with electrical resistivity measurements (RCPTU) in 1989. Since then, RCPTU research at UBC has focused on obtaining geo-environmental parameters such as fluid resistivity and soil engineering properties such as porosity and degree of saturation from measurements of bulk soil electrical resistivity using the empirical relationship proposed by Archie (1942). Within this framework, the paper illustrates and discusses important design and calibration issues for resistivity modules such as the use of isolated circuitry to achieve linear calibrations over large ranges of resistivity. The suitability of RCPTU measurements for determination of geo-environmental and geotechnical parameters are assessed using typical ranges of soil and groundwater properties and methods of isolating individual factors for study are discussed. Illustrative examples of RCPTU research efforts including the environmental characterization of mine tailings, delineation of saline water intrusions in fresh water aquifers and the quality control of geotechnical ground densification are presented throughout the text. It is shown that groundwater temperature and hence ion mobility is not significantly altered by frictional heat generated during piezocone penetration and that ratio-based approaches to monitoring soil porosity can be used to eliminate the requirement for extensive groundwater sampling programs. Lastly, it is shown that RCPTU measurements above the water table can only be made using resistivity modules that are stable over a large range of resistivities and that such measurements are the most difficult to interpret because of grain surface conduction effects and generally unknown fluid resistivities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of piezocone tests with a slot filter filled with automotive grease for site characterization of tropical soils is assessed. Laboratory tests using the slot filter filled with automotive grease as well as the conventional porous piezo-element saturated with glycerin were carried out to evaluate the pore pressure (u 2) transducer response. CPTu tests using piezo-elements saturated with glycerin and the slot filter filled with grease were pushed side by side in different research sites in Brazil. Estimates of mechanical and hydraulic soil parameters were made based on pore pressure dissipation curves from using both techniques. Laboratory test results indicate that the pore pressure response using the slot filter with grease was delayed when compared to the piezo-element saturated with glycerin, since grease has a higher viscosity. For tropical soils, the records of u2 in piezocone tests using slot filter with grease presented larger peaks than with porous element saturated with glycerin. Records of u2 using the slot filter above the groundwater table suggest the increase of the degree of saturation in unsaturated zone, where porous filter can be desaturated by suction. The slot filter can be used to help the interpretation of the soil profile with deep groundwater level as well as to help detecting its position for some studied soils. The results shown high repeatability for all study sites. This technique is much easier to handle, especially for tropical soils, where the groundwater table is usually deep and pre-drilling is expensive and time consuming. © 2009 IOS Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A suit able decision-making on managing a contaminated site characterization program is strongly dependent of the diagnosis process. A detailed diagnosis can be done based on a Conceptual Site Model (CSM) elaboration using high resolution site characterization tools. The piezocone (CPTu) test is a high resolution tool which allows attaching several specific sensors, like the resistivity probe. This hybrid device is called the resistivity piezocone (RCPTu). A simulated geo-environmental site characterization program was performed on an erosion site using different tools (direct push tools soil samplers, hollow stem auger (HSA) drilling and RCPTu tests) to develop the CSM for a site similar to the Brazilian conditions. It was observed a good agreement between the site profiles interpreted by the different methods. The resistivity sensor attached to the piezocone improved the interpretation and the decision-making process on site was significantly better for the CSM elaboration. The RCPTu test data also allowed identifying the hydrogeological heterogeneities. The present study shows that the RCPTu test is also a useful and powerful tool to development an accurate CSM in a Brazilian condition, especially in an approach that prioritizes high resolution geo-environmental investigation. © 2013 Taylor & Francis Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEB