28 resultados para CORE-SHELL PHOSPHOR

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, synthesis of the Fe55Pt45/Fe3O4 core/shell structured nanoparticles using the modified polyol process combined with the seed-mediated growth method is reported. Iron oxide shell thickness was tuned controlling the Fe(acac)(3)/FePt seeds in the reaction medium. Annealing of the core/shell structure leads to iron-rich layer formation around the hard FePt phase in the nanoparticle core. However, the 2 nm Fe3O4 shell thickness seems to be the limit to obtain the enhanced magnetization close to the alpha-Fe and preserving an iron oxide shell after annealing at 500 degrees C for 30 min in a reducing atmosphere. The presence of both the oxide layer on nanoparticle surface and an intermediate iron-rich FePt layer after annealing promote strong decreases in the coercive field of the 2-nm-oxide shell thickness. These annealed nanoparticles were functionalized with dextran, presenting the enhanced characteristics for biomedical applications such as higher magnetization, very low coercivity, and a slightly iron oxide passivated layer, which leads an easy functionalization and decreases the nanoparticle toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A YSZ@Al2O3 nanocomposite was obtained by Al 2O3 coating on the surface of yttrium stabilized zirconia via a polymeric precursor method. The resulting core-shell structures were characterized by X-ray diffraction, scanning electron microscopy, transmission electronic microscopy and PL spectra. The TEM micrographs clearly show a homogeneous Al2O3 shell around the ZrO2 core. The observed PL is related to surface-interface defects. Such novel technologies can, in principle, explore materials which are not available in the bulk single crystal form but their figure-of-merit is dramatically dependent on the surface-interface defect states. © 2013 This journal isThe Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Covalent “click” cycloaddition was used to functionalize silica substrates with pH-sensitive nanoparticles, thus producing uniform and highly luminescent analytical devices usable in both commercial fluorimeters and fluorescence microscopes. Quantitative and spatially-resolved extracellular pH measurements were successfully achieved on live cardiac fibroblasts with these novel ion-sensitive surfaces.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nowadays solid state chemists have the possibility of work with low temperature strategies to obtain solid state materials with appropriate physical and chemical properties for useful technological applications. Photonic core shell materials having a core and shell domains composed by a variety of compounds have been synthesized by different methods. In this work we used silica-germania soot prepared by vapor-phase axial deposition as a core where a nanoshell of Eu2O3 was deposited. A new sol-gel like method was used to obtain the Eu2O3 nanoshell coating the SiO2-GeO2 particles, which was prepared by the polymeric precursor method. The photophysical properties of Eu3+ were used to obtain information about the rare earth surrounding in the SiO2-GeO2@Eu2O3 material during the sintering process. The sintering process was followed by the luminescence spectra of Eu3+ and all the samples present the characteristic emission related to the D-5(0) -> F-7(J) (J=0, 1, 2, 3 and 4). The ratios of the D-5(0) -> F-7(2)/D-5(0) -> F-7(1) emission intensity for the SiO2-GeO2@Eu2O3 systems were calculated and it was observed an increase in its values, indicating a low symmetry around the Eu3+ as the temperature increases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We apply the general principles of effective field theories to the construction of effective interactions suitable for few- and many-body calculations in a no-core shell model framework. We calculate the spectrum of systems with three and four two-component fermions in a harmonic trap. In the unitary limit, we find that three-particle results are within 10% of known semianalytical values even in small model spaces. The method is very general, and can be readily extended to other regimes, more particles, different species (e.g., protons and neutrons in nuclear physics), or more-component fermions (as well as bosons). As an illustration, we present calculations of the lowest-energy three-fermion states away from the unitary limit and find a possible inversion of parity in the ground state in the limit of trap size large compared to the scattering length. Furthermore, we investigate the lowest positive-parity states for four fermions, although we are limited by the dimensions we can currently handle in this case.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

NiTiO3 (NTO) nanoparticles encapsulated with SiO2 were prepared by the sol-gel method resulting on core-shell structure. Changes on isoelectric point as a function of silica were evaluated by means of zeta potential. The NTO nanoparticles heat treated at 600 degrees C were characterized by X-ray diffraction, transmission electron microscopy (TEM) and energy dispersive X-ray analysis. TEM observations showed that the mean size of NTO is in the range of 2.5-42.5 nm while the thickness of SiO2 shell attained 1.5-3.5 nm approximately.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ZrO2 powder was coated with Al2O3 precursor generated by a polymeric precursor method in aqueous solution. The system of nanocoated particles formed a core shell-like structure in which the particle is the core and the nanocoating (additive) is the shell. A new approach is reported in order to control the superficial mass transport and the exaggerated grain growth during the sintering of zirconia powder. Transmission electron microscopy (TEM) observations clearly showed the formation of an alumina layer on the surface of the zirconia particles. This layer modifies the sintering process and retards the maximum shrinkage temperature of the pure zirconia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Blends of polyaniline (PAni) and poly(methyl methacrylate) (PMMA) have been produced using core-shell particle synthesis, which is advantageous because it allows changing surface-related properties of PMMA with relatively small amounts of PAW and without the use of organic solvents. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements indicated that the deposition of pollyaniline seems to alter the regular shape of the primary acrylic latex particles. The coverage of PMMA particles by PAW was confirmed by FTIR measurements, where distinct data were obtained from the transmission and diffuse reflectance modes, since the latter is surface sensitive. The zeta potential, which is also a surface-related property, increased with the contents of PAW, as the shells probably became protonated with PAW in the emeraldine salt form. Coverage with PAW did not affect the thermal bulk properties of the PMMA shells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)