29 resultados para COPPER COMPOUNDS

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Xanthomonas axonopodis pv. citri (Xac) causes citrus canker and the completion of the Xac genome sequence has opened up the possibility of investigating basic cellular mechanisms at the genomic level. Copper compounds have been extensively used in agriculture to control plant diseases. The copA and copB genes, identified by annotation of the Xac genome, encode homologues of proteins involved in copper resistance. A gene expression assay by Northern blotting revealed that copA and copB are expressed as a unique transcript specifically induced by copper. Synthesis of the gene products was also induced by copper, reaching a maximum level at 4 h after addition of copper to the culture medium. CopA was a cytosolic protein and CopB was detected in the cytoplasmic membrane. The gene encoding CopA was disrupted by the insertion of a transposon, leading to mutant strains that were unable to grow in culture medium containing copper, even at the lowest CUSO4 concentration tested (0.25 mM), whereas the wild-type strain was able to grow in the presence of 1 mM copper. Cell suspensions of the wild-type and mutant strains in different copper concentrations were inoculated in lemon leaves to analyse their ability to induce citrus canker symptoms. Cells of mutant strains showed higher sensitivity than the wild-type strain in the presence of copper, i.e. they were not able to induce citrus canker symptoms at high copper concentrations and exhibited a more retarded growth in planta.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crystallization of fluoroindate glasses doped with Gd3+, Mn2+ and Cu2+ heat treated at different temperatures, ranging from the glass transition temperature (Tg) to the crystallization temperature (Tc), are investigated by electron paramagnetic resonance (EPR) and 19F nuclear magnetic resonance (NMR). The EPR spectra indicate that the Cu2+ ions in the glass are located in axially distorted octahedral sites. In the crystallized glass, the g-values agreed with those reported for Ba2ZnF6, which correspond to Cu2+ in a tetragonal compressed F- octahedron and to Cu2+ on interstitial sites with a square-planar F- co-ordination. The EPR spectra of the Mn2+ doped glasses exhibit a sextet structure due to the Mn2+ hyperfine interaction. These spectra suggest a highly ordered environment for the Mn2+ ions (close to octahedral symmetry) in the glass. The EPR spectra of the recrystallized sample exhibit resonances at the same position, suggesting that the Mn2+ ions are located in sites of highly symmetric crystalline field. The increase of the line intensity of the sextet and the decrease of the background line in the thermal treated samples suggest that the Mn2+ ions move to the highly ordered sites which contribute to the sextet structure. The EPR spectra of the Gd3+ doped glasses exhibit the typical U-spectrum of a s-state ion in a low symmetry site in disordered systems. The EPR of the crystallized glasses, in contrast, have shown a strong resonance in g ≈ 2.0, suggesting Gd3+ ions in environment close to cubic symmetry. The 19F NMR spin-lattice relaxation rates were also strongly influenced by the crystallization process that takes over in samples annealed above Tc. For the glass samples (doped or undoped) the 19F magnetization recoveries were found to be adjusted by an exponential function and the spin-lattice relaxation was characterized by a single relaxation time. In contrast, for the samples treated above Tc, the 19F magnetization-recovery becomes non-exponential. A remarkable feature of our results is that the changes in the Cu2+, Mn2+, Gd3+ EPR spectra and NMR relaxation, are always observed for the samples annealed above Tc. © 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acidithiobacillus ferrooxidans is used in bioleaching industrial operations to recover metal ions from mineral sulfides. Chalcopyrite and bornite are copper sulfides that have the same elemental composition, but differ in their susceptibility to the bioleaching process. Our objective was to identify differentially expressed proteins in A. ferrooxidans LR cells exposed to chalcopyrite or bornite, as a sole energy source, for 24 hours. Compared to the control (without minerals), proteins were induced or repressed in planktonic cells after contact with chalcopyrite or bornite by 24 hours. These results demonstrated that the time of exposure to the copper minerals was enough to trigger distinct responses in the A. ferrooxidans metabolism. © 2007 Trans Tech Publications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Acidithiobacillus ferrooxidans periplasmic space is known to have proteins involved in the respiratory chains. There are no reports about the expression of the periplasmic proteins in A. ferrooxidans cells attached to chalcopyrite. In this preliminary work, it was compared the periplasmic protein profiles of A. ferrooxidans planktonic and attached cells after exposure to chalcopyrite for 2 hours. The bacterial response to chalcopyrite was investigated by a proteomic approach (two- dimensional gel electrophoresis and mass spectrometry). Four proteins differentially expressed between planktonic and attached cells after exposure to chalcopyrite were identified. Two of these proteins, repressed in chalcopyrite- attached cells, were both identified as superoxide dismutase, whereas the single strand binding protein (SSB) and the PspA/IM30 protein were induced. These results showed that A. ferrooxidans chalcopyrite- attached and planktonic cells show differential expression of the periplasmic proteins and that a proteomic approach can provide a valuable tool to detect proteins related to the A. ferrooxidans response to attachment to the mineral substrates. © (2009) Trans Tech Publications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is believed that the dissolution of chalcopyrite (CuFeS2) in acid medium can be accelerated by the addition of Cl- ions, which modify the electrochemical reactions in the leaching system. Electrochemical noise analysis (ENA) was utilized to evaluate the effect of the Cl- ions and Acidithiobacillus ferrooxidans on the oxidative dissolution of a CPE-chalcopyrite (carbon paste electrode modified with chalcopyrite) in acid medium. The emphasis was on the analysis of the admittance plots (Ac) calculated by ENA. In general, a stable passive behavior was observed, mainly during the initial stages of CPE-chalcopyrite immersion, characterized by a low passive current and a low dispersion of the Ac plots, mainly after bacteria addition. This can be explained by the adhesion of bacterial cells on the CPE-chalcopyrite surface acting as a physical barrier. The greater dispersions in the Ac plots occurred immediately after the Cl- ions addition, in the absence of bacteria characterizing an active-state. In the presence of bacteria the addition of Clions only produced some effect after some time due to the barrier effect caused by bacteria adhesion. © (2009) Trans Tech Publications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this work was to purify a protease from Penicillium waksmanii and to determine its biochemical characteristics and specificity. The extracellular protease isolated that was produced by P. waksmanii is a serine protease that is essential for the reproduction and growth of the fungus. The protease isolated showed 32 kDa, and has optimal activity at pH 8.0 and 35 C towards the substrate Abz-KLRSSKQ-EDDnp. The protease is active in the presence of CaCl2, KCl, and BaCl, and partially inhibited by CuCl2, CoCl2 and totally inhibited by AlCl3 and LiCl. In the presence of 1 M urea, the protease remains 50 % active. The activity of the protease increases 60 % when it is exposed to 0.4 % nonionic surfactant-Triton X-100 and loses 10 % activity in the presence of 0.4 % Tween-80. Using fluorescence resonance energy transfer analysis, the protease showed the most specificity for the peptide Abz-KIRSSKQ-EDDnp with k cat/K m of 10,666 mM-1 s-1, followed by the peptide Abz-GLRSSKQ-EDDnp with a k cat/K m of 7,500 mM -1 s-1. Basic and acidic side chain-containing amino acids performed best at subsite S1. Subsites S2, S3, S′ 2, and S′ 1, S ′ 3 showed a preference for binding for amino acids with hydrophobic and basic amino acid side chain, respectively. High values of k cat/K m were observed for the subsites S2, S3, and S′ 2. The sequence of the N-terminus (ANVVQSNVPSWGLARLSSKKTGTTDYTYD) showed high similarity to the fungi Penicillium citrinum and Penicillium chrysogenum, with 89 % of identity at the amino acid level. © 2012 Springer Science+Business Media New York.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the electrochemical behavior of Cu-16(wt.%)Zn-6.5(wt.%)Al alloy containing the β'-phase (martensite) was studied in borate buffer solution (pH 8.4) by means of open-circuit potential (EOC), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The alloy EOC was -0.29 V vs. Hg/HgO/OH-, similar to that of pure copper in this medium, indicating that the processes which occur on the alloy surface are mainly governed by copper. EIS response was related to the dielectric and transmission properties of the complex oxide layer. The CVs showed peaks concerning the redox reactions for copper and zinc. These peaks were assigned to the formation and reduction of copper and zinc species. Furthermore, they showed that the copper oxidation was suppressed by the presence of zinc and aluminum in the alloy composition. The copper and zinc oxidation to form complex oxide layers and the reduction of the different metallic oxides generated in the anodic potential scan suggest that a solid state reaction could determine the metallic oxide formation. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study was carried out to investigate the effects of copper (Cu) intake on lipid profile, oxidative stress and tissue damage in normal and in diabetic condition. Since diabetes mellitus is a situation of high-risk susceptibility to toxic compounds, we examined potential early markers of Cu excess in diabetic animals. Male Wistar rats, at 60-days-old were divided into six groups of eight rats each. The control(C) received saline from gastric tube, the no-diabetic(Cu-10), treated with 10 mg/kg of Cu(Cu(++)-CuSO(4), gastric tube), no-diabetic with Cu-60mg/kg(Cu-60), diabetic(D), diabetic low-Cu(DCu-10) and diabetic high-Cu(DCu-60). Diabetes was induced by an ip injection of streptozotocin (60mg/kg). After 30 days of treatments, no changes we're observed in serum lactate dehydrogenase, alanine transaminase and alkaline phosphatase; indicating no adverse effects on cardiac and hepatic tissues. D-rats had glucose intolerance and dyslipidemic profile. Cholesterol and LDL-cholesterol were higher in Cu-60 and DCu-60 than in C, Cu-10 and D and DCu-10 groups respectively. Cu-60 rats had higher lipid hydroperoxide (HP) and lower superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) serum activities than C and Cu-10 rats. LH was increased and GSH-Px was decreased, while no alterations were observed in SOD and catalase in serum of DCu-60 animals. DCu-60 rats had increased urinary glucose, creatinine and albumin. In conclusion, Cu intake at high concentration induced adverse effects on lipid profile, associated with oxidative stress and diminished activities of antioxidant enzymes. Diabetic animals were more susceptible to copper toxicity. High Cu intake induced dyslipidemic profile, oxidative stress and kidney dysfunction in diabetic condition. Copper renal toxicity was associated with oxidative stress and reduction at least, one of the antioxidant enzymes. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)