77 resultados para CONDUCTING POLYANILINE
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Blends possessing the elastomeric properties of natural rubber (NR) and the conducting properties of conducting polymer (polyaniline, PANI) were obtained, which are promising for further application in deformation sensors. Blends containing 20% (v/v) of PANI in 80% of NR latex were fabricated by casting in the form of free-standing films and treated either with HCl or with corona discharge, which lead PANI to its conducting state (doping process). Characterization was carried out by Raman spectroscopy, d.c. conductivity and thermogravimetric analysis. Evidence for chemical interaction between PANI and NR was observed, which allowed the conclusion that the NR latex itself is able partially to induce both the primary doping of PANI (by protonation) and the secondary doping of PANI (by changing the chain conformation). Further improvement in the primary doping could be obtained for the blends either by corona discharge or by exposing them to HCl the electrical conductivity reached in the blends was dependent on the doping conditions used, as observed by Raman scattering. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
It is shown that highly conducting films of polyaniline protonated with di-esters of sulfosuccinic and sulfophthalic acids which contain alkyl- or alkoxy-type substituents exhibit highly anisotropic structural, electrical and magnetic properties. The layered-like structure of these films can be described as consisting of polyaniline chains which are mainly oriented parallel to the plane of the film and form regular out-of-plane stacks. These stacks are separated by bilayers of the dopant anions. Accordingly, the main anisotropy observed for solution cast films implies in-plane and out-of-plane measurements. An electrical anisotropy of about 80 is found for the in-plane and out-of-plane electronic conductivities at 5 K. The temperature dependences of the in-plane and out-of-plane conductivities are qualitatively similar and have been fitted as a series combination of variable-range-hopping-type and power law contributions. A maximum is observed in the temperature dependence of the electrical anisotropy at low temperature. The films also show a clear anisotropy of magnetization whose temperature and field characteristics depend on the chemical structure of the dopant anion. © 2013 Elsevier B.V.
Resumo:
Blend films (free-standing) containing 20% in volume of polyaniline (PANI) in 80% of natural rubber (NR) were fabricated by casting in three different ways: (1) adding PANI-EB (emeraldine base) dissolved in N-methyl-2-pyrrolidone (NMP) to the latex (NRL), (2) adding PANI-EB dissolved in in-cresol to NR dissolved in xylol (NRD), (3) overlaying the surface of a pure NR cast film with a PANI layer grown by in situ polymerization (NRO). All the films were immersed into HCl solution to achieve the primary doping (protonation) of PANI before the characterization. The main goal here was to investigate the elastomeric and electrical conductivity properties for each blend, which may be applied as pressure and deformation sensors in the future. The characterization was carried out by optical microscopy, dc conductivity, vibrational spectroscopy (infrared absorption and Raman scattering), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and tensile stress-strain curves. The results suggest that the NRL blend is the most suitable in terms of mechanical and electrical properties required for applications in pressure and deformation sensors: a gain of conductivity without losing the elastomeric property of the rubber. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Blends of poly(vinylidene fluoride), PVDF, and poly(o-methoxyaniline), POMA doped with toluene sulfonic acid, TSA, were prepared by casting at various compositions and studied by scanning electron microscopy, X-ray diffraction and differential scanning calorimetry. The blend composition has a great influence on the morphology obtained. As the concentration of POMA-TSA is increased in the blend an interconnecting fibrillar-like morphology is formed and the spherulites characteristic of pure PVDF are destroyed. The variation of blend morphology is further discussed based on X-ray diffraction and differential scanning calorimetry analysis. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Flexible and free-standing films from blends of polyurethane, based on castor oil, and polyaniline were obtained with various compositions by casting. Significant increase on conductivity followed by a considerable decrease on doping time was obtained by doping the films in N,N-dimethylformamide (DMF) solution with p-toluene sulphonic acid (TSA) or HCl instead of the conventional doping in aqueous solution. This doping efficiency is proposed to be due to an improved swelling of the blend structure caused by the solvent. The electrical conductivity increases significantly upon polyaniline content increase reaching 10(-2) S/cm for a polyaniline content of about 10% (w/w).
Resumo:
Electrically conductive poly(vinylidene fluoride)(PVDF) - polyaniline blends of different composition were synthesized by chemical polymerization of aniline in a mixture of PVDF and dimethylformamide (DMF) and studied by electrical conductivity measurement, UV-Vis-NIR and FTIR spectroscopy. The samples were obtained as flexible films by pressing the powder at 180 degrees C for 5 min. The electrical conductivity showed a great dependence on the syntheses parameters. The higher value of the electrical conductivity was obtained for the oxidant/aniline molar ratio equal to 1 and p-toluenesulfonic acid-TSA/aniline ratio between 3 and 6. UV-Vis-NIR and FTIR spectra of the blend are similar to the doped PANI, indicating that the PANI is responsible for the high electrical conductivity of the blend. The electrical conductivity of blend proved to be stable as a function of temperature decreasing about one order at temperature of 100 degrees C. The route used to obtain the polymer blend showed to be a suitable alternative in order to obtain PVDF/PANI-TSA blends with high electrical conductivity. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Langmuir-Blodgett (LB) films from a ruthenium complex, mer-[RuCl3(dppb)(py)] (dppb = PPh2(CH2)(4)PPh2; py = pyridine) (Rupy), and from mixtures with varied amounts of polyaniline (PANi) were fabricated. Molecular-level interactions between the two components are investigated by surface potential, dc conductivity and Raman spectroscopy measurements, particularly for the mixed film with 10% of Rupy. For the latter, the better miscibility led to an interaction with Rupy inducing a decrease in the conducting state of PANi, as observed in the Raman spectra and conductivity measurement. The interaction causes the final film properties to depend on the concentration of Rupy, and this was exploited to produce a sensor array made up of sensing units consisting of 11-layer LB films from pure PANi, pure Rupy and mixtures with 10 and 30% of Rupy. It is shown that the combination of only four non-specific sensing units allows one to distinguish the basic tastes detected by biological systems, viz. saltiness, sweetness, sourness and bitterness, at the muM level. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The conditions for processing and doping of blends of poly(o-alkoxyaniline)s and poly(vinylidene fluoride) were investigated. Flexible, free-standing and stretchable films of blends of various compositions were obtained by casting. A low percolation threshold was observed with the onset of conductivity at low polyalkoxyaniline contents (i.e. 5%). Interestingly, these blends displayed electrochromism with colour changes similar to those of the parent conducting polymer, as observed from cyclic voltammetry measurements. This behaviour is seen even for low contents of the conducting polymer, indicating that a continuous conducting pathway, which is capable of exchanging charge, is formed within the insulating matrix.
Resumo:
Polyaniline (PAni) has been classified as an intractable polymer, particularly in its conducting form, the emeraldine salt (ES). Therefore one can consider the mixture of water and PAni as a suspension. The conducting form of PAni can be obtained by a doping process known as acid doping, in which a strong acid turns PAni from its insulating form, the emeraldine base (EB), into the conducting form, the emeraldine salt. With the objective of establishing a correlation between the doping level and the zeta potential of polyaniline dispersions, polyaniline + HCl aqueous suspensions were prepared. Positive zeta potential values for the various suspensions of PAni showed that it acquired positive charges after the doping process. It was also observed an increase in zeta potential values as HCl concentration increased, which could be correlated to UV-visible spectra of PAni suspensions.
Resumo:
X-band electron spin resonance (ESR) measurements have been performed on a conducting free-standing film of polyaniline plasticized and protonated with di-n-dodecyl ester of sulfosuccinic acid (DDoESSA). The magnetic field was applied parallel and perpendicular to the plane of the film. At around 75 K a transition is observed from Pauli susceptibility to a localized state in which the spin 1/2 polarons behave as spin 1/2 dimers. A rough estimation of the intradimer and interdimer exchange constants is obtained. Below 5 K, ESR data reveal a weak ferromagnetism with the Dzyaloshinskii-Moriya vector mainly oriented in the plane of the film. The existence of a relatively well-defined n-fold axis along the chain direction in the crystalline regions confers a symmetry compatible with such analysis. © 2013 IOP Publishing Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The [Mn(4)(IV)O(5)(terpy)(4)(H(2)O)(2)](6+) complex shows great potential for electrode modification by electropolymerization using cyclic voltammetry. The electropolymerization mechanism was based on the electron transfer between dx(2)-y(2) orbitals of the metallic center and p pi orbital of the ligand.