49 resultados para CONCRETE MASONRY
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The need for affordable housing and the high cost of today's building materials make necessary to look for useful and affordable technologies for these house buildings. In this context, this study aimed to evaluate the technical and economic feasibility of construction technology called Earthbag for use in public housing. Technical assessments were based on Kiffmeyer and Hunter's book (2004), academics dissertations and construction standards for the technology. The result allowed a positive evaluation towards the feasibility proposal and showing the possibility of replace the use of structural concrete blocks in public housing. The economic viability was performed an economical compared to a project Housing Project Bom Retiro 2 with one of Earthbag which have been shown considerable savings between the techniques. For the construction of masonry, build with purchased sand, 13% lower budget was found in comparison of a concrete masonry block. With the use of sand from the work site itself, there is a saving of 18%. Although earthbag has proven to be a technically and economically feasible for application in the construction of affordable housing, the shortage of technical and scientific studies and Brazilian regulations on this technology has limited its large-scale use
Resumo:
The purpose of this paper is to study the mechanical behavior of concrete blocks and prisms when performing axial compression tests within the Brazilian base of knowledge, intending to foment data of this kind for a world-based network. The blocks were built using five different mixtures in which the quantity of cement and the compacting ratio (density) were varied (during the fabrication process). The three-course-high prisms were assembled using 1 cm (0.39 in.) thick full-bedded joints, always trying to leave the mortar's characteristics constant. The axial compression tests were conducted according to Brazilian practice code recommendations, because most of these standards are very similar to international practice codes. The compressive strength, strains, and rupture form of each mixture studied were recorded. Attempts were made to correlate the strength, efficiency ratio (block strength/prism strength) of the prisms, strains, and rupture form; with the quantity of cement and compacting ratio. The data are presented in tables and figures, and the obtained results are discussed throughout the text. Copyright © 2007, American Concrete Institute. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The texture of concrete blocks is very important and is often the decisive factor when choosing a product, particularly if the building specifications call for high-strength blocks allied to low-cost finish, in which case exposed blocks with a closer texture are often preferred. Furthermore, a closer texture, especially for exteriors, may be a vital factor in ensuring the building's durability. At present, however, there is no standard to quantify the texture of a structural block. Further, when studying masonry blocks compressive strength should never be overlooked. This article discusses a procedure to produce concrete block textures with and without the addition of lime, but still to achieve the required compressive strength. The method used in this study, to evaluate texture, proved to be simpler and cheaper than methods reported by other authors in the literature. The addition of small quantities of lime proved beneficial for both texture and compressive strength. Increasing the amount of lime further, however, only improved texture.
Resumo:
The texture of concrete blocks is very important and is often the decisive factor when choosing a product, particularly if the building specifications does not dispense with the high resistance of the blocks, but has the purpose of reducing costs with finishing, therefore preferring exposed blocks with a closer texture. Furthermore, a closer texture, especially for exteriors,may be the vital factor of the building's pathology.However, there is so far no standard to quantify the texture of a structural block. This article proposes to apply the freely available UTHSCSA-Image ToolTM program developed by the University of Texas Health Science Center at San Antonio to evaluate the texture of masonry blocks. One aspect that should never be overlooked when studying masonry blocks is compressive strength. Therefore, this work also gets the compressive strength of the blocks with and without the addition of lime. The addition of small quantities of lime proved beneficial for both texture and compressive strength. However, increasing the amount of lime proved to be feasible only to improve texture. © 2012 Taylor & Francis Group.
Resumo:
Os modelos de bielas e tirantes são procedimentos de análise apropriados para projetar elementos de concreto armado em casos de regiões onde há alterações geométricas ou concentrações de tensões, denominadas regiões D. Trata-se de bons modelos de representação da estrutura para avaliar melhor o seu comportamento estrutural e seu mecanismo resistente. O presente artigo aplica a técnica da otimização topológica para identificar o fluxo de tensões nas estruturas, definindo a configuração dos membros de bielas e tirantes, e quantifica seus valores para dimensionamento. Utilizam-se o método ESO, e uma variante desse, o SESO (Smoothing ESO) com o método dos elementos finitos em elasticidade plana. A filosofia do SESO baseia-se na observação de que se o elemento não for necessário à estrutura, sua contribuição de rigidez vai diminuindo progressivamente. Isto é, sua remoção é atenuada nos valores da matriz constitutiva, como se este estivesse em processo de danificação. Para validar a presente formulação, apresentam-se alguns exemplos numéricos onde se comparam suas respostas com as advindas de trabalhos científicos pioneiros sobre o assunto.
Resumo:
The paper presents a new methodology to model material failure, in two-dimensional reinforced concrete members, using the Continuum Strong Discontinuity Approach (CSDA). The mixture theory is used as the methodological approach to model reinforced concrete as a composite material, constituted by a plain concrete matrix reinforced with two embedded orthogonal long fiber bundles (rebars). Matrix failure is modeled on the basis of a continuum damage model, equipped with strain softening, whereas the rebars effects are modeled by means of phenomenological constitutive models devised to reproduce the axial non-linear behavior, as well as the bondslip and dowel effects. The proposed methodology extends the fundamental ingredients of the standard Strong Discontinuity Approach, and the embedded discontinuity finite element formulations, in homogeneous materials, to matrix/fiber composite materials, as reinforced concrete. The specific aspects of the material failure modeling for those composites are also addressed. A number of available experimental tests are reproduced in order to illustrate the feasibility of the proposed methodology. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The paper presents a methodology to model three-dimensional reinforced concrete members by means of embedded discontinuity elements based on the Continuum Strong Discontinuous Approach (CSDA). Mixture theory concepts are used to model reinforced concrete as a 31) composite material constituted of concrete with long fibers (rebars) bundles oriented in different directions embedded in it. The effects of the rebars are modeled by phenomenological constitutive models devised to reproduce the axial non-linear behavior, as well as the bond-slip and dowel action. The paper presents the constitutive models assumed for the components and the compatibility conditions chosen to constitute the composite. Numerical analyses of existing experimental reinforced concrete members are presented, illustrating the applicability of the proposed methodology.
Resumo:
This work is about the 21st century reinforced concrete analysis under the point of view of its constituent materials. First of all it is described the theoretical approach of the bending elements calculated based on the Norms BAEL 91 standarts. After that, numerical load-displacement are presented from reinforced concrete beams and plates validated by experimental data. The numerical modellings has been carried on in the program CASTEM 2000. In this program a elastoplastic model of Drucker-Prager defines the rupture surface of the concrete in non associative plasticity. The crack is smeared on the Gauss points of the finite elements with formation criterion starting from the definition of the rupture surface in the branch traction-traction of the Rankine model. The reinforcements were modeled in a discrete approach with perfect bond. Finally, a comparative analysis is made between the numerical results and calculated criteria showing the future of high performance reinforced concrete in this beginning of 21st century.
Resumo:
The objective of this paper is the numerical study of the behavior of reinforced concrete beams and columns by non-linear numerical simulations. The numerical analysis is based on the finite element method implemented in CASTEM 2000. This program uses the constitutive elastoplastic perfect model for the steel, the Drucker-Prager model for the concrete and the Newton-Raphson for the solution of non-linear systems. This work concentrates on the determination of equilibrium curves to the beams and force-strain curves to the columns. The numeric responses are confronted with experimental results found in the literature in order to check there liability of the numerical analyses.
Resumo:
The concrete offshore platforms, which are subjected a several loading combinations and, thus, requires an analysis more generic possible, can be designed using the concepts adopted to shell elements, but the resistance must be verify in particular cross-sections to shear forces. This work about design of shell elements will be make using the three-layer shell theory. The elements are subject to combined loading of membrane and plate, totalizing eight components of internal forces, which are three membrane forces, three moments (two out-of-plane bending moments and one in-plane, or torsion, moment) and two shear forces. The design method adopted, utilizing the iterative process proposed by Lourenco & Figueiras (1993) obtained from equations of equilibrium developed by Gupta (1896) , will be compared to results of experimentally tested shell elements found in the literature using the program DIANA.
Resumo:
In this study, fibre-reinforced self-compacting concretes were developed for precast building components, incorporating either adherent metal fibres or polymeric synthetic slipping fibres or a combination of both. To achieve the warranted workability, compressive and splitting tensile strengths, compositions were determined by preliminary tests on self-compacting materials with various proportions of metal fibres. Bending tests in controlled deflection confirmed the positive contribution of fibres in the mechanical behaviour of self-compacting concrete. The comparison between vibrated and self-compacting concretes of similar mechanical characteristics indicated a possible better fibre-matrix bond in the case of self-compacting types. The results also showed that the properties of the hybrid fibre-reinforced self-compacting concrete could be inferred from the properties of the individual single-fibre reinforcements and their respective proportions through simple mix-rules.
Resumo:
This paper presents a new non-destructive testing (NDT) for reinforced concrete structures, in order to identify the components of their reinforcement. A time varying electromagnetic field is generated close to the structure by electromagnetic devices specially designed for this purpose. The presence of ferromagnetic materials (the steel bars of the reinforcement) immersed in the concrete disturbs the magnetic field at the surface of the structure. These field alterations are detected by sensors coils placed on the concrete surface. Variations in position and cross section (the size) of steel bars immersed in concrete originate slightly different values for the induced voltages at the coils.. The values for the induced voltages were obtained in laboratory tests, and multi-layer perceptron artificial neural networks with Levemberg-Marquardt training algorithm were used to identify the location and size of the bar. Preliminary results can be considered very good.