59 resultados para CONCEPTION RATE
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Vacas da raça Holandesas em lactação (n=158) aos 213±112 dias de lactação e produção de 26±9kg leite/dia, foram aleatoriamente distribuídas em três grupos: controle (GC, n=52, salina); GnRH (GG, n=55, 100mcg de gonadorelina); e hCG (GH, n=51, 2500UI de hCG) aplicado no dia 5 após a inseminação artificial (IA). A temperatura retal foi verificada no momento da IA, e as amostras de sangue coletadas nos dias 5, 7 e 12 após a IA. A concepção foi determinada entre os dias 42 e 49 após IA. As concentrações séricas de progesterona (P4 - ng/ml, média±EPM) para GC, GG, e GH foram, respectivamente: no dia 5: 2,7±0,4, 2,5±0,4 e 3,2±0,4; no dia 7: 4,8±0,4, 4,2±0,4 e 5,7±0,5; e no dia 12 após a IA: 5,2±0,4, 6,9±0,4 e 8,5±0,5. O aumento proporcional na concentração sérica de P4 entre os dias 5 e 7 após IA (GC: 178%, GG: 168%, e GH: 178%) sugere que os tratamentos não induziram efeito luteotrópico no corpo lúteo (CL) existente. O aumento na P4 sérica entre os dias 7 e 12 nos animais tratados com GnRH ou hCG (GG: 164% e GH: 149%, P<0,01) em relação aos animais controle (GC: 18%, P=0,31), sugere a indução de novo CL. Os tratamentos com GnRH ou hCG aumentaram as taxas de concepção nas vacas com temperatura retal abaixo de 39,7°C (GC: 10,1%, n=26; GG: 36,8%, n=27 e GH: 32,8%, n=21), mas não em vacas com temperatura retal acima de 39,7°C (15,2% n=26; 17,8%, n=28 e 24,4%, n=30). Os resultados sugerem que a alta temperatura corporal pode mascarar os efeitos positivos do tratamento com GnRH ou hCG no dia 5 após a IA, na concepção.
Resumo:
Avaliaram-se os efeitos de diferentes níveis de ingestão de suplemento com milho moído finamente (MF) em vacas de corte, mantidas em pasto, após inseminação artificial em tempo fixo (IATF), sobre a concentração sérica de progesterona (P4) no dia 7, e sobre a concepção no dia 28 pós IATF. Trezentas e sessenta e quatro vacas Brangus, multíparas lactantes, tiveram as atividades folicular e luteal sincronizadas por tratamento com benzoato de estradiol (Estrogin; 2,0mg IM) e inserção de dispositivo intravaginal de P4 (CIDR) no dia -11, seguido por tratamento com PGF2 α (Lutalyse; 25mg IM) no dia - 4, retirada do CIDR e remoção temporária de bezerros no dia -2, e tratamento com GnRH (Fertagyl; 100 µ g IM), IATF e retorno dos bezerros no dia 0. No dia 0, as vacas foram aleatoriamente distribuídas para receber um dos quatro tratamentos: G1 -2kg/dia de MF do dia 0 ao dia 21; G2 -2kg/dia de MF do dia 0 ao dia 7, e 6kg/dia de MF do dia 8 ao dia 21; G3 -6kg/dia de MF do dia 0 ao dia 7, e 2kg/dia de MF do dia 8 ao dia 21; G4 -6kg/dia de MF do dia 0 ao dia 21. Amostras de sangue foram colhidas no dia 7, e o diagnóstico de gestação foi realizado por ultrassonografia no dia 28. As vacas suplementadas com 2kg/dia de MF apresentaram maior concentração sérica de P4 no dia 7 em relação às vacas suplementadas com 6kg/dia (1,58 vs. 1,28ng/mL; P<0,01, EPM=0,08). As vacas do G4 apresentaram maior taxa de concepção em relação às vacas do G1 (58,4 vs. 41,9%, respectivamente; P<0,05). O nível de consumo do suplemento energético após a IATF é negativamente associado às concentrações séricas de P4, porém positivamente associado à taxa de concepção em vacas de corte em pasto.
Resumo:
The objective of this study was to determine the effect of age of the ovulatory follicle on fertility in beef heifers. Ovulation was synchronized with the 5 d CO-Synch + controlled intravaginal drug release (CIDR) program in heifers in Montana (MT; n = 162, Hereford and Angus Crossbred) and Ohio (OH; n = 170, Angus Crossbred). All heifers received estradiol benzoate (EB; 1 mg/500 kg BW, [i.m.]) 6 d after the final GnRH of the synchronization program to induce follicular atresia and emergence of a new follicular wave (NFW) followed by prostaglandin F2 alpha (PGF(2 alpha); 25 mg, i.m.) administration either 5 d (young follicle [YF]; n = 158) or 9 d (mature follicle [MF]; n = 174) after EB. Estrous detection was performed for 5 d after PGF(2 alpha) with AI approximately 12 h after onset of estrus. Ovarian ultrasonography (MT location only) was performed in YF and MF at EB, 5 d after EB, PGF(2 alpha), and AI. Heifers in MT (n = 20) and OH (n = 18) that were not presynchronized or did not initiate a NFW were excluded from further analyses, resulting in 142 and 152 heifers in MT and OH, respectively. Heifers from the MF treatment in MT that initiated a second NFW after EB but before PGF(2 alpha) (MF2; n = 14) were excluded from the primary analysis. In the secondary analysis, the MF2 group was compared to MF and YF treatments in MT. Estrous response was similar (90%; 252/280) between treatments and locations. Proestrus interval (from PGF(2 alpha) to estrus) and age of the ovulatory follicle at AI were similar for MF heifers between locations (54.6 +/- 1.7 h and 8.3 +/- 0.07 h) but were greater (P < 0.01) for YF heifers in OH (78.5 +/- 1.4 h and 5.3 +/- 0.06 h) than MT (67.4 +/- 1.6 h and 4.8 +/- 0.06 h; treatment x location, P < 0.01). However, conception rate did not differ for MF (63.8%; 74/116) and YF (67.0%; 91/136) treatments. In the MT heifers, follicle size and follicle age atAI in the YF treatment (10.4 +/- 0.15 mm and 4.8 +/- 0.06 d, respectively) was less (P < 0.01) than in the MF treatment (11.0 +/- 0.18 mm and 8.3 +/- 0.11 d, respectively), but conception rate to AI did not differ between treatments in MT. In the MF2 group proestrus interval was greater (P < 0.01); hence, diameter of the ovulatory follicle and age were similar to that for the YF treatment. Conception rate to AI did not differ between MF2, MF, and YF (61.5, 63.3, and 64.7%, respectively) in MT. In conclusion, manipulation of age of the nonpersistent ovulatory follicle at spontaneous ovulation did not influence conception rate.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this study was to evaluate the factors that may affect conception rates (CR) following artificial insemination (AI) or embryo transfer (ET) in lactating Holstein cows. Estrous cycling cows producing 33.1 +/- 7.2 kg of milk/d received PGF(2 alpha) injections and were assigned randomly to 1 of 2 groups (AI or ET). Cows detected in estrus (n = 387) between 48 and 96 h after the PGF2a injection received AI (n = 227) 12 h after detection of estrus or ET (n = 160) 6 to 8 d later (1 fresh embryo, grade 1 or 2, produced from nonlactating cows). Pregnancy was diagnosed at 28 and 42 d after estrus, and embryonic loss occurred when a cow was pregnant on d 28 but not pregnant on d 42. Ovulation, conception, and embryonic loss were analyzed by a logistic model to evaluate the effects of covariates [days in milk (DIM), milk yield, body temperature (BT) at d 7 and 14 post-AI, and serum concentration of progesterone (P4) at d 7 and 14 post-AI] on the probability of success. The first analysis included all cows that were detected in estrus. The CR of AI and ET were different on d 28 (AI, 32.6% vs. ET, 49.4%) and 42 (AI, 29.1% vs. ET, 38.8%) and were negatively influenced by high BT (d 7) and DIM. The second analysis included only cows with a corpus luteum on d 7. Ovulation rate was 84.8% and was only negatively affected by DIM. Conception rates of AI and ET were different on d 28 (AI, 37.9% vs. ET, 59.4%) and 42 (AI, 33.8% vs. ET, 46.6%) and were negatively influenced by high BT (d 7). The third analysis included only ovulating cows that were 7 d postestrus. Conception rates of AI and ET were different on d 28 (AI, 37.5% vs. ET, 63.2%) and 42 (AI, 31.7% vs. ET, 51.7%) and were negatively influenced by high BT (d 7). There was a positive effect of serum concentration of P4 and a negative effect of milk production on the probability of conception for the AI group but not for the ET group. The fourth analysis was embryonic loss (AI, 10.8% vs. ET, 21.5%). The transfer of fresh embryos is an important tool to increase the probability of conception of lactating Holstein cows because it can bypass the negative effects of milk production and low P4 on the early embryo. The superiority of ET vs. AI is more evident in high-producing cows. High BT measured on d 7 had a negative effect on CR and embryonic retention.
Conception rates at ET in lactating dairy recipient cows after estrous or ovulation synchronization.
Resumo:
The present study investigated how the timing of the administration of estradiol benzoate (EB) impacted the synchronization of ovulation in fixed-time artificial insemination protocols of cattle. To accomplish this, two experiments were conducted, with EB injection occurring at different times: at withdrawal of the progesterone-releasing (N) intravaginal device or 24 h later. The effectiveness of these times was compared by examining ovarian follicular dynamics (Experiment 1, n = 30) and conception rates (Experiment 2, n = 504). In Experiment 1, follicular dynamics was performed in 30 Nelore cows (Bos indicus) allocated into two groups. on a random day of the estrous cycle (Day 0), both groups received 2 mg of EB i.m. and a P4-releasing intravaginal device, which was removed on Day 8, when 400 IU of eCG and 150 mu g of PGF were administered. The control group (G-EB9; n = 15) received 1 mg of EB on Day 9, while Group EB8 (G-EB8; n = 15) received the same dose a day earlier. Ovarian ultrasonographic evaluations were performed every 8 h after device removal until ovulation. The timing of EB administration (Day 8 compared with Day 9) did affect the interval between P4 device removal to ovulation (59.4 +/- 2.0 h compared with 69.3 +/- 1.7 h) and maximum diameter of dominant (1.54 +/- 0.06 a cm compared with 1.71 +/- 0.05 b cm, P = 0.03) and ovulatory (1.46 +/- 0.05 a cm compared with 1.58 +/- 0.04 b cm, P < 0.01) follicles. In Experiment 2,504 suckling cows received the same treatment described in Experiment 1, but insemination was performed as follows: Group EB8-AI48h (G-EB8-AI48h; n = 119) and Group EB8-AI54h (G-EB8-AI54h; n = 134) received 1 mg of EB on Day 8 and FrAI was performed, respectively, 48 or 54 h after P4 device removal. Group EB9-AI48h (G-EB9-AI48h; n = 126) and Group EB9-AI54h (G-EB9-AI54h n = 125) received the same treatments and underwent the same FTAI protocols as G-EB8-AI48h and G-EB8-AI54h, respectively; however, EB was administered on Day 9. Conception rates were greater (P < 0.05) in G-EB9-AI54h 163.2% (79/125) a], G-EB9-AI48h [58.7% (74/126) a] and G-EB8-AI48h [58.8% (70/119) a] than in G-EB8-AI54h [34.3% (46/134) b]. We concluded that when EB administration occurred at device withdrawal (D8), the interval to ovulation shortened and dominant and ovulatory follicle diameters decreased. Furthermore, when EB treatment was performed 24 h after device removal, FTAI conducted at either 48 or 54 h resulted in similar conception rates. However, EB treatment on the same day as device withdrawal resulted in a lesser conception rate when FTAI was conducted 54 h after device removal. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Background: In bovines, more efficient management practices are important for maximizing profitability. In order to increase the pregnancy rates in artificial insemination (AI) programs, several hormonal protocols were developed to synchronize the follicular wave and the moment of ovulation in beef and dairy cattle. In dairy cattle, detection of estrus can be difficult due to a number of factors including the incidence of silent estrus. Hormonal treatments designed to control both luteal and follicular function has permitting efficient synchronizations of time of ovulation. Thus, the AI can be performed in a large number of animals on a fixed schedule without the need for detection of estrus. Using these management techniques, the fixed-time artificial insemination (TAI) can overcome the problem of accurate estrus detection and help in reducing the incidence of repeat breeding. In addition, with TAI in cattle operations, it is possible to facilitate management practices and commercialization, and to reduce the time and semen wasting with animals inseminated at incorrect times. The investigation of practical and efficient TAI protocols is important for reducing the labor and animal handling of TAI in dairy cattle, as well as for increasing the profitability of the cattle management system. This study was carried out in order to investigate the effectiveness of TAI in dairy heifers treated with a practical progesterone-based protocol.Materials, Methods & Results: This experiment was conducted at the university farm located in southwestern Brazil, during May 2009. Thirty-nine cycling crossbred dairy heifers were employed in this study. All animals received a single intramuscular injection of estradiol benzoate and intravaginal progesterone releasing device in a random stage of the estrous cycle (Day 0). on day 7 the animals were treated with PGF2a analogue and on day 9 the device was removed. Forty-eight hours after the device removal (day 11) a synthetic analogue of GnRH was administered and the animals were fixed-time artificially inseminated at the time of GnRH injection. The inseminations were performed using four different batches from the same Holstein bull. Among the heifers that were synchronized (87.2%), 30.8% ovulated until 24 h after TAI and 56.4% ovulated between 24 and 32 h after TAI. The conception rate was 61.5%. No effects of ovulation time in conception rates were detected. The conception rate from heifers that ovulated until 24 h after TAI was 58.3% and from heifers that ovulated between 24 and 32 h after TAI was 77.3%. The mean of ovulatory follicle in heifers that ovulated until 24 h was 14.3 mm and in heifers that ovulated between 24 and 32 h was 11.9 mm.Discussion: Taking together, the findings of the present study, along with those of others, emphasize the concept that development of practical methods for TAI offers significant advantages to dairy producers if conception rates are close or greater to those obtained after breeding at detected estrus. Thus, the results of the present study reinforce the possibility of making dairy cattle production more cost-effective using TAI. In conclusion, with the progesterone-based TAI protocol of the present experiment all synchronized animals ovulated up to 32 h after GnRH+TAI and no effects of ovulation time related to conception rate was detected. The exogenous control of luteal and follicular development facilitated the reproductive management and animal handling. Also, inseminating the heifers at the moment of GnRH injection in a progesterone-based TAI protocol is a practical strategy and provided satisfactory results regarding ovulation and conception rates in dairy heifers.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
No experimento I, foi avaliada a alteração da condição corporal (CC) pré e pós-parto em 155 novilhas inseminadas para parir de setembro a dezembro. A CC foi avaliada mensalmente no pré e pós-parto, de junho a fevereiro. No experimento II, 538 vacas primíparas foram sincronizadas com o protocolo de inseminação artificial em tempo fixo (IATF) que usou estradiol junto ao dispositivo intravaginal de progesterona (CIDR®). As taxas de ciclicidade, sincronização e concepção foram avaliadas por ultra-som. No experimento I, os animais que pariram primeiro tiveram maior (P<0,001) redução na CC pós-parto. No experimento II, foi observado maior CC (P<0,0001) nos animais com menor número de dias pós-parto, maior (P<0,05) taxa de sincronização nas vacas de melhor CC e aumento (P<0,0001) na taxa de concepção proporcional ao aumento na CC (incremento médio na concepção de seis pontos percentuais para cada 0,25 ponto na CC). Não se deve antecipar a parição de novilhas de corte quando se pretende realizar IATF no início da estação de monta subseqüente.