115 resultados para COLLAGEN MATRICES

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The tissue response to polyanionic collagen matrices, prepared from bovine pericardium and implanted subperiosteally in rat calvaria, was studied. The materials were implanted in 72 male rats (Rattus norvegicus, albinus, Holtzman), randomly divided into four groups: GI-MBP hydrolyzed for 24 h; GII-MBP hydrolyzed for 36 h; GIII-MBP hydrolyzed for 48 h; GIV-native M BP. The materials were explanted after 15, 30 and 60 days and analyzed by routine histological procedures. Except for group IV (native bovine pericardium), polyanionic collagen from groups GI, GII and GIII showed low inflammatory reaction associated with bone formation, partially or completely integrated to the cranial bone; group GIV was characterized by an intense inflammatory reaction with occasional dystrophic mineralization and with occasional bone formation at 60 days when there was a decrease in the inflammatory reaction. Thus, the MBP from groups I, II and III were biologically compatible, enhancing bone formation with a slight delay at 60 days in GII. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Host-derived proteases have been reported to degrade the collagen matrix of incompletely-resin-infiltrated dentin. This study tested the hypothesis that interfacial degradation of resin-dentin bonds may be prevented or delayed by the application of chlorhexidine (CHX), a matrix metalloproteinase inhibitor, to dentin after phosphoric acid-etching. Contralateral pairs of resin-bonded Class I restorations in non-carious third molars were kept under intra-oral function for 14 months. Preservation of resin-dentin bonds was assessed by microtensile bond strength tests and TEM examination. In vivo bond strength remained stable in the CHX-treated specimens, while bond strength decreased significantly in control teeth. Resin-infiltrated dentin in CHX-treated specimens exhibited normal structural integrity of the collagen network. Conversely, progressive disintegration of the fibrillar network was identified in control specimens. Auto-degradation of collagen matrices can occur in resin-infiltrated dentin, but may be prevented by the application of a synthetic protease inhibitor, such as chlorhexidine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mineral phase of dentin is located primarily within collagen fibrils. During development, bone or dentin collagen fibrils are formed first and then water within the fibril is replaced with apatite crystallites. Mineralized collagen contains very little water. During dentin bonding, acid-etching of mineralized dentin solubilizes the mineral crystallites and replaces them with water. During the infiltration phase of dentin bonding, adhesive comonomers are supposed to replace all of the collagen water with adhesive monomers that are then polymerized into copolymers. The authors of a recently published review suggested that dental monomers were too large to enter and displace water from collagen fibrils. If that were true, the endogenous proteases bound to dentin collagen could be responsible for unimpeded collagen degradation that is responsible for the poor durability of resin-dentin bonds. The current work studied the size-exclusion characteristics of dentin collagen, using a gel-filtration-like column chromatography technique, using dentin powder instead of Sephadex. The elution volumes of test molecules, including adhesive monomers, revealed that adhesive monomers smaller than ∼1000 Da can freely diffuse into collagen water, while molecules of 10,000 Da begin to be excluded, and bovine serum albumin (66,000 Da) was fully excluded. These results validate the concept that dental monomers can permeate between collagen molecules during infiltration by etch-and-rinse adhesives in water-saturated matrices. © 2013 Acta Materialia Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Collagen makes up one third of the total protein in humans, being formed by the connection of three polypeptide chains arranged in a triple helix. This protein has fundamental importance in the formation of extracellular matrix of connective tissue. This study aimed to analyze the structural changes of collagen, which are resulting from inflammatory processes in oral mucosa, and to make the comparative analysis between the histopathology and the Raman spectra. The samples of tissues with inflammatory fibrous hyperplasia (IFH) and normal mucosa (NM) were evaluated by Raman Spectroscopy, hematoxylin-eosin and Massons trichrome stain. The histological analysis in both stains showed differences in collagen fibers, which was presented as thin fibers and arranged in parallel direction in NM and as collagen fibers are thick, mature and not organized, showing that these types of stain show morphological changes of collagen in IFH. The Raman Spectroscopy discriminate the groups of NM and IFH based on vibrational modes of proline, hydroxiproline and CH3, CH2. The histological stains only shows information from morphological data, and can be complemented by Raman spectra. This technique could demonstrate that inflammatory process caused some changes in collagen structure which is related to aminoacids such as proline and hidroxyproline. © 2011 SPIE-OSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scaffolds of chitosan and collagen can offer a biological niche for the growth of adipose derived stem cells (ADSC). The objective of this work was to characterize the physico-chemical properties of the scaffolds and the ADSC, as well as their interactions to direct influences of the scaffolds on the behavior of ADSC. The methodology included an enzymatic treatment of fat obtained by liposuction by collagenase, ASDC immunophenotyping, cell growth kinetics, biocompatibility studies of the scaffolds analyzed by the activity of alkaline phosphatase (AP), nitric oxide (NO) determination by the Griess-Saltzman reaction, and images of both optical and scanning electron microscopy of the matrices. The extent of the crosslinking of genipin and glutaraldehyde was evaluated by ninhydrin assays, solubility tests and degradation of the matrices. The results showed that the matrices are biocompatible, exhibit physical and chemical properties needed to house cells in vivo and are strong stimulators of signaling proteins (AP) and other molecules (NO) which are important in tissue healing. Therefore, the matrices provide a biological niche for ADSC adhesion, proliferation and cells activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. This work measured the amount of bound versus unbound water in completely-demineralized dentin.Methods. Dentin beams prepared from extracted human teeth were completely demineralized, rinsed and dried to constant mass. They were rehydrated in 41% relative humidity (RH), while gravimetrically measuring their mass increase until the first plateau was reached at 0.064 (vacuum) or 0.116 g H2O/g dry mass (Drierite). The specimens were then exposed to 60% RH until attaining the second plateau at 0.220 (vacuum) or 0.191 g H2O/g dry mass (Drierite), and subsequently exposed to 99% RH until attaining the third plateau at 0.493 (vacuum) or 0.401 g H2O/g dry mass (Drierite).Results. Exposure of the first layer of bound water to 0% RH for 5 min produced a -0.3% loss of bound water; in the second layer of bound water it caused a -3.3% loss of bound water; in the third layer it caused a -6% loss of bound water. Immersion in 100% ethanol or acetone for 5 min produced a 2.8 and 1.9% loss of bound water from the first layer, respectively; it caused a -4 and -7% loss of bound water in the second layer, respectively; and a -17 and -23% loss of bound water in the third layer. Bound water represented 21-25% of total dentin water. Chemical dehydration of water-saturated dentin with ethanol/acetone for 1 min only removed between 25 and 35% of unbound water, respectively.Signcance. Attempts to remove bound water by evaporation were not very successful. Chemical dehydration with 100% acetone was more successful than 100% ethanol especially the third layer of bound water. Since unbound water represents between 75 and 79% of total matrix water, the more such water can be removed, the more resin can be infiltrated. (C) 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomodification of existing hard tissue structures, specifically tooth dentin, is an innovative approach proposed to improve the biomechanical and biochemical properties of tissue for potential preventive or reparative therapies. The objectives of the study were to systematically characterize dentin matrices biomodified by proanthocyanidin-rich grape seed extract (GSE) and glutaraldehyde (GD). Changes to the biochemistry and biomechanical properties were assessed by several assays to investigate the degree of interaction, biodegradation rates, proteoglycan interaction, and effect of collagen fibril orientation and environmental conditions on the tensile properties. The highest degree of agent–dentin interaction was observed with GSE, which exhibited the highest denaturation temperature, regardless of the agent concentration. Biodegradation rates decreased remarkably following biomodification of dentin matrices after 24 h collagenase digestion. A significant decrease in the proteoglycan content of GSE-treated samples was observed using a micro-assay for glycosaminoglycans and histological electron microscopy, while no changes were observed for GD and the control. The tensile strength properties of GD-biomodified dentin matrices were affected by dentin tubule orientation, most likely due to the orientation of the collagen fibrils. Higher and/or increased stability of the tensile properties of GD- and GSE-treated samples were observed following exposure to collagenase and 8 months water storage. Biomodification of dentin matrices using chemical agents not only affects the collagen biochemistry, but also involves interaction with proteoglycans. Tissue biomodifiers interact differently with dentin matrices and may provide the tissue with enhanced preventive and restorative/reparative abilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Curaua fibers were treated with ionized air to improve the fiber/phenolic matrix adhesion.The treatment with ionized air did not change the thermal stability of the fibers. The impact strength increased with increase in the fiber treatment time. SEM micrographs of the fibers showed that the ionized air treatment led to separation of the fiber bundles. Treatment for 12 h also caused a partial degradation of the fibers, which prompted the matrix to transfer the load to a poorer reinforcing agent during impact, thereby decreasing the impact strength of the related composite. The composites reinforced with fibers treated with ionized air absorbed less water than those reinforced with untreated fibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blend films of poly (o-ethoxyaniline) (POEA) and collagen were fabricated by casting under optimized conditions and characterized by Raman scattering and UV-vis absorption spectroscopies. The UV-vis spectra showed that the addition of collagen in the aqueous solution of POEA promotes a dedoping of the POEA. This effect was also observed for the blend films as supported by Raman scattering and a mechanism for the chemical interaction between POEA-collagen is proposed. The influences of different percentage of collagen as well as the pH of stock solutions during the fabrication process of the blend films were also investigated. It was found that the preparation method plays an important role in the flexibility and freestanding properties of the films. Complementary, the surface morphology was studied by atomic force microscopy and the conductivity by dc measurements. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single real transformation matrices are tested as phase-mode transformation matrices of typical symmetrical systems with double three-phase and two parallel double three-phase transmission lines. These single real transformation matrices are achieved from eigenvector matrices of the mentioned systems and they are based on Clarke's matrix. Using linear combinations of the Clarke's matrix elements, the techniques applied to the single three-phase lines are extended to systems with 6 or 12 phase conductors. For transposed double three-phase lines, phase Z and Y matrices are changed into diagonal matrices in mode domain. Considering non-transposed cases of double three-phase lines, the results are not exact and the error analyses are performed using the exact eigenvalues. In case of two parallel double three-phase lines, the exact single real transformation matrix has not been obtained yet. Searching for this exact matrix, the analyses are based on a single homopolar reference. For all analyses in this paper, the homopolar mode is used as the only homopolar reference for all phase conductors of the studied system. (C) 2008 Elsevier B.V. All rights reserved.