98 resultados para CO2 storage and evacuation
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of the current study was to verify that stallion, spermatoza could be cooled for 24 hours and then frozen. In experiment I, one ejaculate from each of 13 stallions was used. Semen was collected and split into two parts; one part immediately frozen using standard cryo-preservation techniques and the other diluted, stored in an Equitainer for 24 hours, and then frozen. In experiment II, one ejaculate from each of 12 stallions was collected, diluted with Botu-Semen, and split into two parts: one cooled in an Equitainer and the other in Max-Semen Express without prior centrifugation. After 24 hours of cooling, the samples were centrifuged to remove seminal plasma and concentrate the sperm, and resuspended in Botu-Crio (R) extender containing on e of three cryoprotectant treatments (1% glycerol + 4% dimethylformamide, 1% glycerol + 4% dimethylacetamide and 1% glycerol + 4% methylformamide), maintained at 5 degrees C for 20 minutes, then frozen in nitrogen vapour. No difference was observed between the two cooling systems. The association of 1% glycerol and 4% methylformamide provided the best post-thaw progressive motility. For experiment III, two stallions were used for a fertility trial. Forty three inseminations were performed using 22 mares. No differences were seen in semen parameters and pregnancy rates when comparing the two freezing protocols (conventional and cooled/frozen). Pregnancy rates for conventional and cooled/frozen semen were, respectively, 72.7% and 82.3% (stallion A), and 40.0% and 50.0% (stallion B). We concluded that cooling equine-semen for 24 hours before freezing while maintaining sperm viability and fertility is possible.
Resumo:
Objectives: This study investigated the effect of relining, water storage and cyclic loading on the ultimate flexural strength (FSU) and on the flexural strength at the proportional limit (FSPl) of a denture base acrylic resin (Lucitone 550-L).Methods: Rectangular bars of L were made (64 mm x 10 mm x 2 mm) and relined (1.3 mm) with four relining resins (Kooliner-K, Ufi Gel Hard-UGH, Tokuso Rebase Fast-TR and New Truliner-NT). In addition, specimens relined with L and intact L specimens were made (64 mm x 10 mm x 3.3 mm). A three-point flexural test was applied on the specimens (n = 10) after (1) polymerization; (2) water storage (30 days); (3) cyclic loading (10,000 cycles at 5 Hz) and (4) water storage (30 days) + cyclic loading. Data (MPa) were analyzed with three-way ANOVA and Tukey's HSD tests (alpha = 0.05). To test for a possible correlation between FSU and FSPl, a linear regression coefficient 'r' was calculated.Results: After water storage, L-UGH and L-TR demonstrated an increased FSU (41.4950.64 MPa and 49.95-57.36 MPa, respectively) (P < 0.05). Only L-TR demonstrated an increased FSPl (20.58-24.21 MPa) after water storage (P < 0.05). L-L had the highest FSU (between 78.57 and 85.09 MPa) and FSPl (between 31.30 and 34.17 MPa) (P < 0.05). The cyclic loading decreased the FSU and FSPl of all materials (P < 0.05). Regression analysis showed a strong linear correlation between the two variables (r = 0.941).Conclusions: Water storage improved the FSU of L-UGH and L-TR and the FSPl of L-TR. L-L produced the highest FSU and FSPl. The FSU and FSPl of all materials were detrimentally influenced by cyclic loading.
Resumo:
Objective: To evaluate the effect of water storage time on the cytotoxicity of soft liners.Methods: Sample discs of soft liners Dentusoft, Dentuflex, Trusoft, Ufi-Gel-P and denture base acrylic resin Lucitone-550 were prepared and divided into four groups: GN: No treatment, G24: Stored in water at 37 degrees C for 24 h; G48: Stored in water at 37 degrees C for 48 h, GHW: Immersed in water at 55 degrees C for 10 min. To analyse the cytotoxic effect, three samples of each group were placed in tubes with Dubelcco's Modified Eagle Mediums and incubated at 37 degrees C for 24 h. During this period, the toxic substances were leached to the culture medium. The cytotoxicity was analysed quantitatively by the incorporation of radioactivity H-3-thymidine checking the number of viable cells (synthesis of DNA). The data were statistically analysed using two-way ANOVA and Tukey's honestly significant difference tests (alpha = 0.05).Results: Treatments did not reduce the cytotoxicity effect of the soft liners (p > 0.05). It was found that Ufi-Gel-P had a non-cytotoxic effect, Trusoft had a slightly cytotoxic effect, Dentuflex had a moderated cytotoxic effect, Dentusoft alternated between slightly and non-cytotoxic effect, and Lucitone-550 had non-cytotoxic effect when stored in water for 48 h.Conclusion: The effect of water storage and the heat treatment did not reduce the cytotoxicity of the soft liners.
Resumo:
O trabalho teve como objetivo estudar os efeitos do tempo de armazenamento e de tratamentos com ácido giberélico, no processo germinativo de sementes de lichieira (Litchi chinensis Sonn.). As sementes foram retiradas de frutos maduros, lavadas, secas à sombra e colocadas para germinar imediatamente ou então, armazenadas em geladeira (8°C) por 15 e 30 dias. Os tratamentos corresponderam à imersão das sementes por 24 horas nas seguintes soluções com aeração: água, GA3 a 50, 100 e 200 mg.L-1. Através dos resultados obtidos, observou-se que as sementes perderam o poder germinativo, à medida que aumentou-se o tempo de armazenamento, sendo a porcentagem de germinação muito baixa (7%) aos 30 dias de armazenamento. O tempo médio de germinação foi menor após 15 dias de armazenamento.
Resumo:
A emissão de CO2 do solo apresenta alta variabilidade espacial, devido à grande dependência espacial observada nas propriedades do solo que a influenciam. Neste estudo, objetivou-se: caracterizar e relacionar a variabilidade espacial da respiração do solo e propriedades relacionadas; avaliar a acurácia dos resultados fornecidos pelo método da krigagem ordinária e simulação sequencial gaussiana; e avaliar a incerteza na predição da variabilidade espacial da emissão de CO2 do solo e demais propriedades utilizando a simulação sequencial gaussiana. O estudo foi conduzido em uma malha amostral irregular com 141 pontos, instalada sobre a cultura de cana-de-açúcar. Nesses pontos foram avaliados a emissão de CO2 do solo, a temperatura do solo, a porosidade livre de água, o teor de matéria orgânica e a densidade do solo. Todas as variáveis apresentaram estrutura de dependência espacial. A emissão de CO2 do solo mostrou correlações positivas com a matéria orgânica (r = 0,25, p < 0,05) e a porosidade livre de água (r = 0,27, p <0,01) e negativa com a densidade do solo (r = -0,41, p < 0,01). No entanto, quando os valores estimados espacialmente (N=8833) são considerados, a porosidade livre de água passa a ser a principal variável responsável pelas características espaciais da respiração do solo, apresentando correlação de 0,26 (p < 0,01). As simulações individuais propiciaram, para todas as variáveis analisadas, melhor reprodução das funções de distribuição acumuladas e dos variogramas, em comparação à krigagem e estimativa E-type. As maiores incertezas na predição da emissão de CO2 estiveram associadas às regiões da área estudada com maiores valores observados e estimados, produzindo estimativas, ao longo do período estudado, de 0,18 a 1,85 t CO2 ha-1, dependendo dos diferentes cenários simulados. O conhecimento das incertezas gerado por meio dos diferentes cenários de estimativa pode ser incluído em inventários de gases do efeito estufa, resultando em estimativas mais conservadoras do potencial de emissão desses gases.
Resumo:
Objective - To evaluate the effect of changing the mode of ventilation from spontaneous to controlled on the arterial-to-end-tidal CO2 difference [P(a-ET)CO2] and physiological dead space (VD(phys)/VT) in laterally and dorsally recumbent halothane-anesthetized horses. Study Design - Prospective, experimental, nonrandomized trial. Animals - Seven mixed breed adult horses (1 male and 6 female) weighing 320 ± 11 kg. Methods - Horses were anesthetized in 2 positions - right lateral and dorsal recumbency - with a minimum interval of 1 month. Anesthesia was maintained with halothane in oxygen for 180 minutes. Spontaneous ventilation (SV) was used for 90 minutes followed by 90 minutes of controlled ventilation (CV). The same ventilator settings were used for both laterally and dorsally recumbent horses. Arterial blood gas analysis was performed every 30 minutes during anesthesia. End-tidal CO2 (PETCO2) was measured continuously. P(a-ET)CO2 and VD(phys)/VT were calculated. Statistical analysis included analysis of variance for repeated measures over time, followed by Student-Newman-Keuls test. Comparison between groups was performed using a paired t test; P < .05 was considered significant. Results - P(a-ET)CO2 and VD(phys)/VT increased during SV, whereas CV reduced these variables. The variables did not change significantly throughout mechanical ventilation in either group. Dorsally recumbent horses showed greater P(a-ET)CO2 and VD(phys)/VT values throughout. PaCO2 was greater during CV in dorsally positioned horses. Conclusions and Clinical Relevance - Changing the mode of ventilation from spontaneous to controlled was effective in reducing P(a-ET)CO2 and physiological dead space in both laterally and dorsally recumbent halothane-anesthetized horses. Dorsal recumbency resulted in greater impairment of effective ventilation. Capnometry has a limited value for accurate estimation of PaCO, in anesthetized horses, although it may be used to evaluate pulmonary function when paired with arterial blood gas analysis. © Copyright 2000 by The American College of Veterinary Surgeons.
Resumo:
To examine the evolution of endurance-exercise behaviour, we have selectively bred four replicate lines of laboratory mice (Mus domesticus) for high voluntary wheel running ('high runner' or HR lines), while also maintaining four non-selected control (C) lines. By generation 16, HR mice ran ∼2.7-fold more than C mice, mainly by running faster (especially in females), a differential maintained through subsequent generations, suggesting an evolutionary limit of unknown origin. We hypothesized that HR mice would have higher glycogen levels before nightly running, show greater depletion of those depots during their more intense wheel running, and have increased glycogen synthase activity and GLUT-4 protein in skeletal muscle. We sampled females from generation 35 at three times (photophase 07:00 h-19:00 h) during days 5-6 of wheel access, as in the routine selection protocol: Group 1, day 5, 16:00 h-17:30 h, wheels blocked from 13:00 h; Group 2, day 6, 02:00 h-03:30 h (immediately after peak running); and Group 3, day 6, 07:00 h-08:30 h. An additional Group 4, sampled 16:00 h-17:30 h, never had wheels. HR individuals with the mini-muscle phenotype (50% reduced hindlimb muscle mass) were distinguished for statistical analyses comparing C, HR normal, and HR mini. HR mini ran more than HR normal, and at higher speeds, which might explain why they have been favored by the selective-breeding protocol. Plasma glucose was higher in Group 1 than in Group 4, indicating a training effect (phenotypic plasticity). Without wheels, no differences in gastrocnemius GLUT-4 were observed. After 5 days with wheels, all mice showed elevated GLUT-4, but HR normal and mini were 2.5-fold higher than C. At all times and irrespective of wheel access, HR mini showed approximately three-fold higher [glycogen] in gastrocnemius and altered glycogen synthase activity. HR mini also showed elevated glycogen in soleus when sampled during peak running. All mice showed some glycogen depletion during nightly wheel running, in muscles and/or liver, but the magnitude of this depletion was not large and hence does not seem to be limiting to the evolution of even-higher wheel running.
Resumo:
Soil CO2 emission (F-CO2) is influenced by chemical, physical and biological factors that affect the production of CO2 in the soil and its transport to the atmosphere. F-CO2 varies in time and space depending on environmental conditions, including the management of the agricultural area. The aim of this study was to investigate the spatial variability structure of F-CO2 and soil attributes in a mechanically harvested sugarcane area (green harvest) using fractal dimension (D-F) derived from isotropic variograms at different scales (fractograms). F-CO2 showed an overall average of 1.51 mu mol CO2 m(-2) s(-1) and correlated significantly (P < 0.05) with soil physical attributes, such as soil bulk density, air-filled pore space, macroporosity and microporosity. Topologically significant DF values were obtained from the characterization of F-CO2 at medium and large scales (above 20 m), with values of 2.92 and 2.90, respectively. The variations in D-F with scales indicate that the spatial variability structure of F-CO2 was similar to that observed for soil temperature and total pore volume and was the inverse of that observed for other soil attributes, such as soil moisture, soil bulk density, microporosity, air-filled pore space, silt and clay content, pH, available phosphorus and the sum of bases. Thus, the spatial variability structure of F-CO2 presented a significant relationship with the spatial variability structure for most soil attributes, indicating the possibility of using fractograms as a tool to better describe the spatial dependence of variables along the scale. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)