6 resultados para CDA 250

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foi estudada a viabilidade de utilização da pulverização CDA 25C, na aplicação do herbicida em pré-emergência na cultura do arroz de sequeiro. O herbicida empregado foi o pendimethalin nas doses de 0,0; 1,5; 2,0; 2,5 e 3,0 litro s/ha da formulação comercial a 50%. A pulverização convencional foi efetuada com bicos 11003 com consumo de 200 litros de calda per hectare. O processo CDA 250 foi aplicado por meio de bico rotativo (Micromax) com dois níveis de consumo de calda : 50 1/ha e 27 1/ha. Os resultados mostraram que: a) - o método CDA 250 proporciona controle dc mato e produtividade de arroz equivalentes ao método convencional; b) para o bico Micromax, a aplicação da formulação comercial de pendimethalin a 50% com vazão de 0,48 1/min./bico, a distância entre bicos deve ser de 1,75 m e para a vazão de 0,96 1/min./bloco, essa distancia deve ser de 1,90 m; c)- a aplicação do pendimethalin 50% C.E. pelo processo CDA 250, empregando 27 litros de calda por hectare foi o processo mais interessante por oferecer vantagens logísticas apreciáveis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this work is to study the process of interaction of protons with matter through Monte Carlo simulation. For this purpose, it was employed the SRIM program (Stopping and Range of Ions in Matter ) and MCNPX (Monte Carlo N-Particle eXtended) v2.50. This work is going to support the development of a tomography system with protons. It was studied the interaction of proton with the follow materials: Polimethyl Mehacralate (PMMA), MS20 Tissue Substitute and water. This work employed energies in range of 50 MeV and 250 MeV, that is the range of clinical interest. The energy loss of proton after cross a material layer, the decreasing of its intensity, the angular and lateral de ection of incident beam, including and excluding nuclear interactions. This work is related with Medical Physics and Material Physics, like interaction of radiation with matter, particle transport phenomena, and the experimental methods in Nuclear Physics like simulation and computational by Monte Carlo method

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the recent years, the use of proton beams in radiotherapy has been an outstanding progress (SMITH, 2006). Up to now, computed tomography (CT) is a prerequisite for treatment planning in this kind of therapy because it provides the electron density distribution required for calculation of dose and the interval of doses. However, the use of CT images for proton treatment planning ignores fundamental differences in physical interaction processes between photons and protons and is, therefore, potentially inaccurate (SADROZINSKI, 2004). Proton CT (pCT) can in principle directly measure the density distribution needed in a patient for the dose distribution (SCHULTE, et al, 2004). One important problem that should be solved is the implementation of image reconstruction algorithms. In this sense, it is necessary to know how the presence of materials with different density and composition interfere in the energy deposition by ionization and coulomb excitation, during its trajectory. The study was conducted in two stages, was used in both the program SRIM (The Stopping and Range of Ions in Matter) to perform simulations of the interaction of proton beams with pencil beam type. In the first step we used the energies in the range of 100-250 MeV (ZIEGLER, 1999). The targets were set to 50 mm in length for the beam of 100 MeV, due to its interaction with the target, and short-range, and 70 mm for 150, 200 and 250 MeV The target was composed of liquid water and a layer of 6 mm cortical bone (ICRP). It were made 9 simulations varying the position of the heterogeneity of 5 mm. In the second step the energy of 250 MeV was taken out from the simulations, due to its greater energy and less interaction. The targets were diminished to 50 mm thick to standardize the simulations. The layer of bone was divided into two equal parts and both were put in the ends of the target... (Complete abstract click electronic access below)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)