48 resultados para CATALYTIC PROPERTIES
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Nanoparticles of tin oxide, doped with Ce and Y, were prepared using the polymeric precursor method. The structural variations of the tin oxide nanoparticles were characterized by means of nitrogen physisorption, carbon dioxide chemisorption, X-ray diffraction, and X-ray photoelectron spectroscopy. The synthesized samples, undoped and doped with the rare earths, were used to promote the ethanol steam reforming reaction. The SnO2-based nanoparticles were shown to be active catalysts for the ethanol steam reforming. The surface properties, such as surface area, basicity/base strength distribution, and catalytic activity/selectivity, were influenced by the rare earth doping of SnO2 and also by the annealing temperatures. Doping led to chemical and micro-structural variations at the surface of the SnO2 particles. Changes in the catalytic properties of the samples, such as selectivity toward ethylene, may be ascribed to different dopings and annealing temperatures.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Wurtzite-type Zn1-xMnxO (x = 0, 0.03, 0.05, 0.07) nanostructures were successfully synthesised using a simple microwave-assisted hydrothermal route and their catalytic properties were investigated in the cellulose conversion. The morphology of the nanocatalysts is dopant-dependent. Pure ZnO presented multi-plate morphology with a flower-like shape of nanometric sizes, while the Zn0.97Mn0.03O sample is formed by nanoplates with the presence of spherical nanoparticles; the Zn0.95Mn0.05O and Zn0.93Mn0.07O samples are mainly formed by nanorods with the presence of a small quantity of spherical nanoparticles. The catalyst without Mn did not show any catalytic activity in the cellulose conversion. The Mn doping promoted an increase in the density of weak acid sites which, according to the catalytic results, favoured promotion of the reaction. © 2013 Institute of Chemistry, Slovak Academy of Sciences.
Resumo:
Using density functional theory and a model developed in our own group, we have investigated the suitability of three intermetallic compounds - AuSn, PdSn, and PtSn - as electrode materials for hydrogen oxidation in fuel cells, focusing on their CO tolerance and their catalytic properties. All three metals were found to have lower susceptibility to be poisoned by CO compared to platinum, but only PtSn promises to be a good catalyst for hydrogen oxidation. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Endochondral calcification involves the participation of matrix vesicles (MVs), but it remains unclear whether calcification ectopically induced by implants of demineralized bone matrix also proceeds via MVs. Ectopic bone formation was induced by implanting rat demineralized diaphyseal bone matrix into the dorsal subcutaneous tissue of Wistar rats and was examined histologically and biochemically. Budding of MVs from chondrocytes was observed to serve as nucleation sites for mineralization during induced ectopic osteogenesis, presenting a diameter with Gaussian distribution with a median of 306 ± 103 nm. While the role of tissue-nonspecific alkaline phosphatase (TNAP) during mineralization involves hydrolysis of inorganic pyrophosphate (PPi), it is unclear how the microenvironment of MV may affect the ability of TNAP to hydrolyze the variety of substrates present at sites of mineralization. We show that the implants contain high levels of TNAP capable of hydrolyzing p-nitrophenylphosphate (pNPP), ATP and PPi. The catalytic properties of glycosyl phosphatidylinositol-anchored, polidocanol-solubilized and phosphatidylinositol-specific phospholipase C-released TNAP were compared using pNPP, ATP and PPi as substrates. While the enzymatic efficiency (k cat/Km) remained comparable between polidocanol-solubilized and membrane-bound TNAP for all three substrates, the k cat/Km for the phosphatidylinositol-specific phospholipase C-solubilized enzyme increased approximately 108-, 56-, and 556-fold for pNPP, ATP and PPi, respectively, compared to the membrane-bound enzyme. Our data are consistent with the involvement of MVs during ectopic calcification and also suggest that the location of TNAP on the membrane of MVs may play a role in determining substrate selectivity in this micro-compartment.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
HZSM5 zeolite was modified by exchanging proton by niobium (V). Several samples were obtained with various degrees of exchange. Pore volumes and acidity were measured to characterize these exchanged zeolites. Catalytic properties were evaluated with two reaction tests: m-xylene transformation and n-heptane cracking. The introduction of niobium on HZSM5 zeolite decreases the diffusion coefficient of 2-methyl-pentane and increases the zeolite acidity. The sample containing niobium are initially more active in cracking of n-heptane and m-xylene isomerization than HZSM5 alone.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Penicillin G acylase is the second most important enzyme used by industry in an immobilized form. Penicillin hydrolysis is its main application. This reaction is used to produce 6-aminopenicillanic acid (6-APA), an intermediate in the synthesis of semisynthetic antibiotics. This work aims to compare catalytic properties of different penicillin G acylase (PGA) derivatives obtained by multipoint immobilization of the enzyme on macroporous silica. Enzyme amino groups react with different aldehyde groups produced in the support using either glutaraldehyde or glyoxyl activation. In the former method, silica reacts with g-aminopropyltriethoxysilane (g-APTS) and glutaraldehyde; in the latter, a reaction with glycidoxypropyltrimethoxysilane (GPTMS) is followed by acid hydrolysis and oxidation using sodium periodate. This work determines the influence of degree of activation, using glutaraldehyde, on immobilization parameters. PGA was immobilized on these two different supports. Maximum enzyme load, immobilized enzyme activity (derivative activity), rate of immobilization and thermal stability were checked for both cases. For glutaraldehyde activation, the results showed that 0.5% of the g-APTS is sufficient for all the hydroxyl groups in the silica to react. They also showed that degree of activation only affects immobilization yield and reaction velocity and that reduction of the glutaraldehyde derivatives with sodium borohydride does not affect their thermal stability. In comparing the derivatives obtained using glyoxyl and glutaraldehyde activation, it was observed that the glyoxyl derivatives presented better immobilization parameters, with a maximum enzyme load of 264 IU/g silica and a half-life of 20 minutes at 60 °C.
Resumo:
This work describes the construction and application of a biomimetic sensor for paracetamol determination in different samples. The sensor was prepared by modifying a glassy carbon electrode surface with a Nafion (R) membrane doped with FeTPyPz. The best performance of the sensor in 0.1 mol L-1 acetate buffer was at pH 3.6. Under these conditions, an oxidation potential of paracetamol was observed at 445 mV vs. Ag vertical bar AgCl. The sensor presented a linear response range between 4.0 and 420 mu mol L-1, a sensitivity of 46.015 mA L mol(-1) cm(-2), quantification and detection limits of 4.0 mu mol L-1 and 1.2 mu mol L-1, respectively. A detailed investigation about its electrochemical behavior and selectivity was carried out. The results suggested that FeTPyPz presents catalytic properties similar to P450 enzyme for paracetamol oxidation. Finally, the sensor was applied for paracetamol determination in commercial drugs and for the monitoring of its degradation in an electrochemical batch reactor effluent.