115 resultados para CASEIN PHOSPHOPEPTIDE AMORPHOUS CALCIUM PHOSPHATE
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to analyze the anticaries potential of pit and fissure sealants containing amorphous calcium phosphate (ACP) by synchrotron microtomography. Bovine enamel blocks (4x4 mm; n=50) were selected through surface hardness (Knoop) analysis. Slabs were obtained through cross-sections taken 1 mm from the border of the enamel. Five indentations, spaced 100 mu m apart, were made 300 mu m from the border. Ten specimens were prepared for each tested material (Ultraseal XT plus TM, Aegis, Embrace, Vitremer and Experimental Sealant). The materials were randomly attached to the sectioned surfaces of the enamel blocks and fixed with sticky wax. The specimens were submitted to pH cycling. After that, the surface hardness (SH1) was determined, and the blocks were submitted to synchrotron microcomputed tomography analysis to calculate the mineral concentration (Delta g(HAp) cm(-3)) at different areas of the enamel. The comparison between the SH1 and DgHAp cm(-3) showed a correlation for all groups (r=0.840; p<0.001). The fluoride groups presented positive values of DgHAp cm(-3), indicating a mineral gain that was observed mainly in the outer part of the enamel. The ACP showed mineral loss in the outer enamel compared with fluoride groups, although it inhibited the demineralization in the deeper areas of enamel. The combination of two remineralizing agents (fluoride and ACP) was highly effective in preventing demineralization.
Resumo:
New pit-and-fissure sealants with the capacity to release calcium and phosphate because of the presence of ACP have been introduced into the dental marketplace. With the continuous introduction of new dental materials, it is important not only to research and confirm their properties, but also to propose modifications or associations that may contribute to their improvement.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective: To evaluate the effect of different chewing gum brands on the salivary pH of children with primary dentition. Method: Forty children were selected and assigned to four groups: control (no chewing gum); sugarless chewing gum; chewing gum with casein phosphopeptide-amorphous calcium phosphate; and chewing gum with xylitol. The first saliva collection was made after supervised tooth brushing for stabilization of the oral pH. Next, all children were instructed to drink slowly 100 mL of a cola-based soft drink (Coca-Cola®) and a new saliva collection was made 10 min later. Then, each group chewed on the chewing gum for 5 min and discarded it after this time. Saliva was collected again at 5, 10 and 15 min intervals after start using the chewing gum. Measurement of salivary pH was made with colorimetric test papers and a digital pH-meter. Data were analyzed statistically by analysis of variance and Tukey’s test at a 5% significance level. Results: The use of chewing gums accelerated the increase of salivary pH to considerably alkaline levels after consumption of an acidic beverage, especially within the first minutes. The highest levels were obtained in the groups of children that used chewing gums containing xylitol and casein phosphopeptide-amorphous calcium phosphate. Conclusion: Children that used the chewing gums after ingestion of an acidic soft drink presented an increase in salivary pH, with the best results in the groups that used chewing gums containing casein phosphopeptide-amorphous calcium phosphate and xylitol.
Resumo:
This study investigated the effects of the morphology and physicochemical properties of calcium phosphate (CaP) nanoparticles on osteogenesis. Two types of CaP nanoparticles were compared, namely amorphous calcium phosphate (ACP) nano-spheres (diameter: 9-13 nm) and poorly crystalline apatite (PCA) nano-needles (30-50 nm x 2-4 nm) that closely resemble bone apatite. CaP particles were spin-coated onto titanium discs and implants; they were evaluated in cultured mouse calvarial osteoblasts, as well as after implantation in rabbit femurs. A significant dependence of CaP coatings was observed in osteoblast-related gene expression (Runx2, Col1a1 and Spp1). Specifically, the PCA group presented an up-regulation of the osteospecific genes, while the ACP group suppressed the Runx2 and Col1a1 expression when compared to blank titanium substrates. Both the ACP and PCA groups presented a more than three-fold increase of calcium deposition, as suggested by Alizarin red staining. The removal torque results implied a slight tendency in favour of the PCA group. Different forms of CaP nanostructures presented different biologic differences; the obtained information can be used to optimize surface coatings on biomaterials. © 2013 IOP Publishing Ltd.
Resumo:
Titanium and its alloys are widely used as biomaterials due to their mechanical, chemical and biological properties. To enhance the biocompatibility of titanium alloys, various surface treatments have been proposed. In particular, the formation of titanium oxide nanotubes layers has been extensively examined. Among the various materials for implants, calcium phosphates and hydroxyapatite are widely used clinically. In this work, titanium nanotubes were fabricated on the surface of Ti-7.5Mo alloy by anodization. The samples were anodized for 20 V in an electrolyte containing glycerol in combination with ammonium fluoride (NH4F, 0.25%), and the anodization time was 24 h. After being anodized, specimens were heat treated at 450 °C and 600°C for 1 h to crystallize the amorphous TiO2 nanotubes and then treated with NaOH solution to make them bioactive, to induce growth of calcium phosphate in a simulated body fluid. Surface morphology and coating chemistry were obtained respectively using, field-emission scanning electron microscopy (FEG-SEM), AFM and X-ray diffraction (XRD). It was shown that the presence of titanium nanotubes induces the growth of a sodium titanate nanolayer. During the subsequent invitro immersion in a simulated body fluid, the sodium titanate nanolayer induced the nucleation and growth of nano-dimensioned calcium phosphate. It was possible to observe the formation of TiO2 nanotubes on the surface of Ti-7.5Mo. Calcium phosphate coating was greater in the samples with larger nanotube diameter. These findings represent a simple surface treatment for Ti-7.5Mo alloy that has high potential for biomedical applications. © (2013) Trans Tech Publications, Switzerland.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Extensive bone defects in maxillofacial region can be corrected with autogenous grafts; otherwise, the disadvantages of the therapeutics modality take the research for new bone substitutes. The aim of the study was to evaluate and compare the osteoconductive properties of 3 commercial available biomaterials. A total of 30 calvarial defects (5-mm diameter) were randomly divided into 5 treatment groups, with a total of 6 defects per treatment group (n = 6). The treatment groups were as follows: 500 to 1000 Km beta-tricalcium phosphate (beta-TCP), polylactic and polyglycolic acid (PL/PG) gel, calcium phosphate cement, untreated control, and autograft control. The evaluations were based on histomorphometric analysis at 60 postoperative days. The results have shown that beta-TCP and autograft control supported bone formation at 60 postoperative days. beta-Tricalcium phosphate showed the highest amount of mineralized area per total area and statistically significant compared with PL/PG, calcium phosphate cement, and untreated control groups. The PL/PG gel does not have osteoconductive properties and performed similar to empty control. Calcium phosphate cement showed higher number of multinucleated giant cells around the sites of the biomaterial and showed newly formed bone only at the edges of the biomaterial, without bone formation within the biomaterial. The findings presented herein indicate that bone formation reached a maximum level when rat calvarial defects were filled with beta-TCP at 60 postoperative days. Further studies should be conducted with beta-TCP to understand the potential of this biomaterial in bone regeneration.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose was to evaluate the cytotoxicity of two novel formulations (alpha and beta) of calcium phosphate cements. Positive control, represented by a commercial hydroxyapatite cement, and negative control were included for comparative purposes. A continuous lineage of fibroblastic cells was used, and the effect of the tested materials on both cell proliferation and viability was assessed by counting cell number on hemocytometer and by the trypan blue exclusion test, respectively. Study design attempted to simulate clinical use by allowing direct and indirect contact of cells and cements. Results were analyzed by the Kruskal-Wallis test and indicated that the beta formulation was extremely cytotoxic (P < 0.001), because this material induced the greatest reduction on cell proliferation and viability. The alpha formulation behaved similarly to the positive control regarding its effect on cell proliferation and viability. Thus, it is concluded that alpha formulation has promise for further evaluation of its behavior in vivo.
Resumo:
Purpose: the purpose of the present study was to evaluate the histologic results of bone cavities that were surgically created in the mandibles of Cebus apella monkeys and filled with autogenous bone, PerioGlas, FillerBone, or Bone Source. Materials and Methods: Surgical cavities 5 mm in diameter were prepared through both mandibular cortices in the mandibular angle region. The cavities were randomly filled, and the animals were divided into groups according to the material employed: Group 1 cavities were filled with autogenous corticocancellous bone; group 2 cavities were filled with calcium phosphate cement (BoneSource); and group 3 and group 4 cavities were filled with bioactive glass (FillerBone and PerioGlas, respectively). After 180 days the animals were sacrificed, and specimens were prepared following routine laboratory procedures for hematoxylin/eosin staining and histologic evaluation. Results: the histologic analysis showed that autogenous bone allowed total repair of the bone defects; bioactive glasses (FillerBone and PerioGlas) allowed total repair of the defects with intimate contact of the remaining granules and newly formed bone; and the cavities filled with calcium phosphate cement (BoneSource) were generally filled by connective fibrous tissue, and the material was almost totally resorbed. Discussion: the autogenous bone, FillerBone, and PerioGlas provided results similar to those in the current literature, showing that autogenous bone is the best Choice for filling critical-size defects. Synthetic implanted materials demonstrated biocompatibility, but the bioglasses demonstrated osteoconductive activity that did not occur with calcium phosphate (BoneSource). Conclusion: According to the methodology used in this study, it can be concluded that the utilization of autogenous bone and bioactive glasses permitted the repair of surgically created critical-size defects by newly formed bone; the synthetic implanted materials demonstrated biocompatibility, and the bioactive glasses demonstrated osteoconductive activity. The PerioGlas was mostly resorbed and replaced by bone and the remaining granules were in close contact with bone; the FillerBone showed many granules in contact with the newly formed bone; BoneSource did not permit repair of the critical-size defects, and the defects were generally filled by connective fibrous tissue.
Resumo:
Background: Prosthetic rehabilitation of the posterior maxilla with dental implants is often difficult because of proximity to the maxillary sinus and insufficient bone height. Maxillary sinus floor augmentation procedures aim to obtain enough bone with an association between biomaterials and autogenous bone.Purpose: the purpose of this study was to evaluate histomorphometrically two grafting materials (calcium phosphate and Ricinus communis polymer) used in maxillary sinus floor augmentation associated with autogenous bone.Materials and Methods: Biopsies were taken from 10 consecutive subjects (mean age 45 years) 10 months after maxillary sinus floor augmentation. The sinus lift was performed with a mixture of autogenous bone and R. communis polymer or calcium phosphate in a 1:2 proportion. Routine histologic processing and staining with hernatoxylin and eosin were performed.Results: the histomorphometric analysis indicated satisfactory regenerative results in both groups for a mean of bone tissue in the grafted area (44.24 +/- 13.79% for the calcium phosphate group and 38.77 +/- 12.85% for the polymer group). Histologic evaluation revealed the presence of an inflammatory infiltrate of mononuclear prevalence that, on average, was nonsignificant. The histologic sections depicted mature bone with compact and cancellous areas in both groups.Conclusion: the results indicated that both graft materials associated with the autogenous bone were biocompatible, although both were still present after 10 months.