53 resultados para CARBONATE PLATFORM
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The Natividade Group is a metasedimentary sequence discontinuously exposed in the southeastern region of the Tocantins State. It rests unconformably on the Archean gneissic-granitoid complex and its associated supracrustals, as well as on granite intrusives of the Lajeado Suite (1.870 Ma). It is unconformably covered by the Monte do Carmo Formation and the Serra Grande Formation. The sequence is preserved on tilted blocks and grabens. The western portion is constituted of only detritic metasediments. The intermediate outcrops presents detritic and some carbonatic metasediments. A carbonatic sequence, with some detritic levels, is recognized at the eastern area. The sections of these different domains are interpreted as constituted of fining-up sequences due to three transgressive episodes into an ensialic paleobasin, with uplifted border to the western side and a carbonate platform to the east, which represents the western extension of the Mambui Group. The Natividade Group presents folds with variable styles and no defined vergence, which are synchronous to the regional metamorphism (lower to upper greenschist facies). Two groups of faults cut the sequence. -from English summary
Resumo:
The fission-track method (FTM) in apatite was applied to 45 samples collected in the Serra da Mantiqueira (Mantiqueira mountain range), the Serra do Mar (Mar mountain range), regions next to these mountain ranges and the coastal region between Ubatuba and Santos in the State of São Paulo, Brazil, to study the thermochronology of the South American Platform in southeast Brazil and its influence on Santos and Campos basins. The data presented in this work complement the previously presented data on the same region (Tello Saenz et al., 2003. J. S. Am. Earth Sci. 15, 765-774) with 31 new samples analyzed. The weighted mean of the corrected ages from high Mantiqueira (around 1000 m), (121 +/- 6) Ma, coincides with the South Atlantic opening. The fact that its thermal history starts at a relatively low temperature (similar to 80 degrees C) suggests that the age of similar to 120 Ma would be the formation age of Serra da Mantiqueira due to a rapid pulse, in which tracks had no time to be retained at the closure temperature, that is similar to 120 degrees C. The Serra do Mar presents a more complicated thermal history, with several reactivations indicated by the changes in the slope of its cooling curve. The thermal histories obtained in the regions next to these mountain ranges are compatible with the results mentioned above. The Santos Basin has unconformities that agree with changes in the slope thermal histories of the studied region. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The fuel cell is an emerging cogeneration technology that has been applied successfully in Japan, the USA and some countries in the European Union. This system performs direct conversion of the chemical energy of the oxidation of hydrogen from fuel with atmospheric oxygen into direct current electricity and waste heat via an electrochemical process relying on the use of different electrolytes (phosphoric acid, molten carbonate and solid oxide, depending on operating temperature). This technology permits the recovery of waste heat, available from 200 degreesC up to 1000 degreesC depending on the electrolyte technology, which can be used in the production of steam, hot or cold water, or hot or cold air, depending on the associated recuperation equipment. In this paper, an energy, exergy and economic analysis of a fuel cell cogeneration system (FCCS) is presented. The FCCS is applied in a segment of the tertiary sector to show that it is a feasible alternative for rational decentralized energy production under Brazilian conditions. The technoeconomic analysis shows a global efficiency or fuel utilization efficiency of 86%. Analysis shows that the exergy losses in the fuel cell unit and the absorption refrigeration system are significant. Furthermore, the payback period estimated is about 3 and 5 years for investments in fuel cells of 1000 and 1500 US$/kW, respectively. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fuel cell as molten carbonate fuel cell (MCFC) operates at high temperatures. Thus, cogeneration processes may be performed, generating heat for its own process or for other purposes of steam generation in the industry. The use of ethanol is one of the best options because this is a renewable and less environmentally offensive fuel, and is cheaper than oil-derived hydrocarbons, as in the case of Brazil. In that country, because of technical, environmental, and economic advantages, the use of ethanol by steam reforming process has been the most investigated process. The objective of this study is to show a thermodynamic analysis of steam reforming of ethanol, to determine the best thermodynamic conditions where the highest volumes of products are produced, making possible a higher production of energy, that is, a more efficient use of resources. To attain this objective, mass and energy balances were performed. Equilibrium constants and advance degrees were calculated to get the best thermodynamic conditions to attain higher reforming efficiency and, hence, higher electric efficiency, using the Nernst equation. The advance degree (according to Castellan 1986, Fundamentos da Fisica/Quimica, Editora LTC, Rio de Janeiro, p. 529, in Portuguese) is a coefficient that indicates the evolution of a reaction, achieving a maximum value when all the reactants' content is used of reforming increases when the operation temperature also increases and when the operation pressure decreases. However, at atmospheric pressure (1 atm), the advance degree tends to stabilize in temperatures above 700 degrees C; that is, the volume of supplemental production of reforming products is very small with respect to high use of energy resources necessary. The use of unused ethanol is also suggested for heating of reactants before reforming. The results show the behavior of MCFC. The current density, at the same tension, is higher at 700 degrees C than other studied temperatures such as 600 and 650 degrees C. This fact occurs due to smaller use of hydrogen at lower temperatures that varies between 46.8% and 58.9% in temperatures between 600 and 700 degrees C. The higher calculated current density is 280 mA/cm(2). The power density increases when the volume of ethanol to be used also increases due to higher production of hydrogen. The highest produced powers at 190 mA/cm(2) are 99.8, 109.8, and 113.7 mW/cm(2) for 873, 923, and 973 K, respectively. The thermodynamic efficiency has the objective to show the connection among operational conditions and energetic factors, which are some parameters that describe a process of internal steam reforming of ethanol.
Resumo:
Yeasts are becoming a common cause of nosocomial fungal infections that affect immunocompromised patients. Such infections can evolve into sepsis, whose mortality rate is high. This study aimed to evaluate the viability of Candida species identification by the automated system Vitek-Biomerieux (Durham, USA). Ninety-eight medical charts referencing the Candida spp. samples available for the study were retrospectively analyzed. The system Vitek-Biomerieux with Candida identification card is recommended for laboratory routine use and presents 80.6% agreement with the reference method. By separate analysis of species, 13.5% of C. parapsilosis samples differed from the reference method, while the Vitek system wrongly identified them as C. tropicalis, C. lusitaneae or as Candida albicans. C. glabrata presented a discrepancy of only one sample (25%), and was identified by Vitek as C. parapsilosis. C. guilliermondii also differed in only one sample (33.3%), being identified as Candida spp. All C. albicans, C. tropicalis and C. lusitaneae samples were identified correctly.
Resumo:
The aim of this study was to evaluate the influence of the platform-switching technique on stress distribution in implant, abutment, and pen-implant tissues, through a 3-dimensional finite element study. Three 3-dimensional mandibular models were fabricated using the Solid Works 2006 and InVesalius software. Each model was composed of a bone block with one implant 10 mm long and of different diameters (3.75 and 5.00 mm). The UCLA abutments also ranged in diameter from 5.00 mm to 4.1 mm. After obtaining the geometries, the models were transferred to the software FEMAP 10.0 for pre- and postprocessing of finite elements to generate the mesh, loading, and boundary conditions. A total load of 200 N was applied in axial (0 degrees), oblique (45 degrees), and lateral (90) directions. The models were solved by the software NeiNastran 9.0 and transferred to the software FEMAP 10.0 to obtain the results that were visualized through von Mises and maximum principal stress maps. Model A (implants with 3.75 mm/abutment with 4.1 mm) exhibited the highest area of stress concentration with all loadings (axial, oblique, and lateral) for the implant and the abutment. All models presented the stress areas at the abutment level and at the implant/abutment interface. Models B (implant with 5.0 mm/abutment with 5.0 mm) and C (implant with 5.0 mm/abutment with 4.1 mm) presented minor areas of stress concentration and similar distribution pattern. For the cortical bone, low stress concentration was observed in the pen-implant region for models B and C in comparison to model A. The trabecular bone exhibited low stress that was well distributed in models B and C. Model A presented the highest stress concentration. Model B exhibited better stress distribution. There was no significant difference between the large-diameter implants (models B and C).
Resumo:
The aim of this study was to evaluate the stress distribution of platform switching implants using a photoelastic method. Three models were constructed of the photoelastic resin PL-2, with a single implant and a screw-retained implant-supported prosthesis. These models were Model A, platform 5.0 mm/abutment 4.1 mm; Model B, platform 4.1 mm/abutment 4.1 mm; and Model C, platform 5.00 mm/abutment 5.00 mm. Axial and oblique (45 degrees) loads of 100 N were applied using a Universal Testing Machine (EMIC DL 3000). Images were photographed with a digital camera and visualized with software (AdobePhotoshop) to facilitate the qualitative analysis. The highest stress concentrations were observed at the apical third of the 3 models. With the oblique load, the highest stress concentrations were located at the implant apex, opposite the load application. Stress concentrations decreased in the cervical region of Model A (platform switching), and Models A (platform switching) and C (conventional/wide-diameter) displayed similar stress magnitudes. Finally, Model B (conventional/regular diameter) displayed the highest stress concentrations of the models tested.
Resumo:
Purpose: The objective of this study was to evaluate, using three-dimensional finite element analysis (3D FEA), the stress distribution in peri-implant bone tissue, implants, and prosthetic components of implant-supported single crowns with the use of the platform-switching concept. Materials and Methods: Three 3D finite element models were created to replicate an external-hexagonal implant system with peri-implant bone tissue in which three different implant-abutment configurations were represented. In the regular platform (RP) group, a regular 4.1-mm-diameter abutment (UCLA) was connected to regular 4.1-mm-diameter implant. The platform-switching (PS) group was simulated by the connection of a wide implant (5.0 mm diameter) to a regular 4.1-mm-diameter UCLA abutment. In the wide-platform (WP) group, a 5.0-mm-diameter UCLA abutment was connected to a 5.0-mm-diameter implant. An occlusal load of 100 N was applied either axially or obliquely on the models using ANSYS software. Results: Both the increase in implant diameter and the use of platform switching played roles in stress reduction. The PS group presented lower stress values than the RP and WP groups for bone and implant. In the peri-implant area, cortical bone exhibited a higher stress concentration than the trabecular bone in all models and both loading situations. Under oblique loading, higher intensity and greater distribution of stress were observed than under axial loading. Platform switching reduced von Mises (17.5% and 9.3% for axial and oblique loads, respectively), minimum (compressive) (19.4% for axial load and 21.9% for oblique load), and maximum (tensile) principal stress values (46.6% for axial load and 26.7% for oblique load) in the peri-implant bone tissue. Conclusion: Platform switching led to improved biomechanical stress distribution in peri-implant bone tissue. Oblique loads resulted in higher stress concentrations than axial loads for all models. Wide-diameter implants had a large influence in reducing stress values in the implant system. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:482-491
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In implant therapy, a peri-implant bone resorption has been noticed mainly in the first year after prosthesis insertion. This bone remodeling can sometimes jeopardize the outcome of the treatment, especially in areas in which short implants are used and also in aesthetic cases. To avoid this occurrence, the use of platform switching (PS) has been used. This study aimed to evaluate the biomechanical concept of PS with relation to stress distribution using two-dimensional finite element analysis. A regular matching diameter connection of abutment-implant (regular platform group [RPG]) and a PS connection (PS group [PSG]) were simulated by 2 two-dimensional finite element models that reproduced a 2-piece implant system with peri-implant bone tissue. A regular implant (prosthetic platform of 4.1 mm) and a wide implant (prosthetic platform of 5.0 mm) were used to represent the RPG and PSG, respectively, in which a regular prosthetic component of 4.1 mm was connected to represent the crown. A load of 100 N was applied on the models using ANSYS software. The RPG spreads the stress over a wider area in the peri-implant bone tissue (159 MPa) and the implant (1610 MPa), whereas the PSG seems to diminish the stress distribution on bone tissue (34 MPa) and implant (649 MPa). Within the limitation of the study, the PS presented better biomechanical behavior in relation to stress distribution on the implant but especially in the bone tissue (80% less). However, in the crown and retention screw, an increase in stress concentration was observed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)