14 resultados para CARBON STEELS

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work five methods of heat treatments are investigated in order to obtained convenient volume fractions of ferrite, bainite, martensite and retained austenite, starting with a low carbon steel and seeking the distinction of the phases, through optical microscopy. Specific chemical etching is improved. The results in tensile and fatigue tests were accomplished and the results were related with the microstructural parameters. The results show that the mechanical properties are closely related with the phases, grains size and the phases morphology. Copyright © 2001 Society of Automotive Engineers, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The precipitation behaviour of a nickel free stainless steel containing 25% chromium, 17% manganese and 0.54% nitrogen, with duplex ferritic-austenitic microstructure, was studied using several complementary techniques of microstructural analysis after aging heat treatments between 600 and 1 000 degrees C for periods of lime between 15 and 6 000 min. During aging heat treatments, ferrite was decomposed into sigma phase and austenite by a eutectoid reaction, like in the Fe-Cr-Ni duplex stainless steel. Chromium nitride precipitation occurred in austenite, which had a high nitrogen supersaturation. Some peculiar aspects were observed in this austenite during its phase transformations. Chromium nitride precipitation occurred discontinuously in a lamellar morphology, such as pearlite in carbon steels. This kind of precipitation is not an ordinary observation in duplex stainless steels and the high levels of nitrogen in austenite can induce this type of precipitation, which has not been previously reported in duplex stainless steels. After chromium nitride precipitation in austenite, it was also observed sigma phase formation near the cells or colonies of discontinuously precipitated chromium nitride. Sigma phase formation was made possible by the depletion of nitrogen in those regions. Time-temperature-transformation (precipitation) diagrams were determined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Applying the Heat Tinting Technique the microestrutural characterization of a 300M steel (medium carbon steel) was accomplished. The steel was austenitized for 20 min to 900°C, followed by holding at 400°C (in the bainitic temperature), with maintenance time of the material in the temperature of 1min, 5min and 30min, aiming at the formation of a multiphase structure. Through the metallographic analysis it is verified that, with the use of this technique, it is possible the determination of the volume fraction of the present phases in the 300M steel, especially in the identification and quantification of the retained austenite. Copyright © 2007 SAE International.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work aims to study the Dual-Phase 600 and 780 steels, which are part of technology development project materials for the automotive industry. It is worth underscoring the antagonistic properties as the Dual-Phase steel assemble, high mechanical strength and elongation due its microstructure, ferrite and martensite. These properties are obtained by a intercritical heat treatment which facilitates the formation of a hardness metastable microstructure shaped plates of low carbon steels. The applicability of Dual Phase steel in the structure of vehicles is huge and its production is already on a commercial scale, so the study and development of this material implies lower cost in automobile manufacturing processes. The dual phase steels DP600 and DP780 underwent tensile, hardness and metallographic analysis to evaluate and comparing its properties. The results indicate that the DP780 steel has higher strength and hardness than the DP600 steel and its microstructure consists of martensite higher fraction which accounts for the higher resistance and hardness. However, the DP600 has higher conformability to DP780 steel

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This project developed microstructural characterization technics of commercial dualphase and multi-phasic (TRIP) steels that were provided by the automotive industry and are currently used as the raw material for the production of automobiles. Inserted in this context, there is the development of the advanced high strength steels in consonance with the ULSABAVC project, which aims the production of safe, economically viable and efficient in terms of fuel consumption vehicles for the 21st century. The micro-structural characterization of biphasic and multiphase steels was done by the identification and quantification of the coexistent phases. In this item, a special attention was given to the technics that were performed using optic microscopy and scanning electron microscopy. An important contribution to this work was the utilization of different alternative chemical reagents (Beraha, Heat-Tinting technics) in addition to the classical ones (Nital and LePera)already used conventionally by the UNESP's Group of Mechanical, Microstructural and Fractografic Characterization of Materials. The revealed microstructures were correlated with the materials' mechanical properties determined through traction tests, such as ultimate tensile strengths, yield strength and stretching important since the material has structural application in the automotive industry. As a result, it was observed the superiority concerning the studied mechanical properties for the biphasic and multiphasic steels when compared to the conventional carbon steels. Besides, it was perceived a large potential for the industrial scale utilization of the Heat Tinting technics in this field, seen its differentiation of the existent phases and easy reproducibility

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An investigation has been conducted to examine the morphological influence on fatigue life of low carbon steel with dual phase microstructure. The results showed that dual-phase microstructure, composed by ferrite and martensite had superior symmetrical bending fatigue strength when compared with ferrite-pearlite steel. Through those tests, evidences of different mechanisms were verified (such as ferrite cyclic hardening, slip band formation and beginning of crack nucleation and propagation). Based on the fatigue tests results, various mechanisms stages were discussed associated with different microstructure morphology. Copyright (C) 1996 Published by Elsevier B.V. Limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Precipitation of FeTiP is reported to occur in Ti-added IF steels containing high P during thermomechanical processing. An ultra-low carbon (ULC) Nb-added steel ingot containing a higher P content (< 0.8 wt-%) was produced via aluminothermic reduction of Fe2O3 followed by double electron beam melting (EBM). FeNbP coarse precipitates were observed in the as-cast microstructure. After soaking at 1050C for 1 h, the plate was hot rolled from 31 mm down to 7 mm in thickness (total reduction of 77%). During cold rolling of these hot bands we observed embrittlement. We believe that this embrittlement can be attributed to the presence of the FeNbP precipitates. Light optical and scanning electron microscopy (SEM/EDS) were used to characterize the microstructure of this ULC steel. (C) 2000 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microhardness measurements were carried out in a low carbon lamination steel after 6% of temper rolling, in order to evaluate local variations of work hardening as a function of crystallographic orientation. EBSD (electron back scattered diffraction) was used to determine grain orientations with respect to individual rolling planes and rolling directions. Hardness was shown to increase with the local Taylor factor. TEM observations and a well-known dislocation hardening model were used to confirm the equivalence between hardness values and the stored energy of cold work. A definite correlation between stored energy and Taylor factors could therefore be established, being more consistent than previous data reported in the literature. The improvement was thought to be related to the rather small plastic deformation, during which Taylor factors could be considered to remain constant. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dual phase steels, characterised by good formability and excellent surface finish, are suitable for applications where processing involves cold deformation. In this context an investigation has been conducted into the cold deformation aging susceptibility of carbon steel API-5L-B and microalloyed steel API-5L-X52, both with dual phase microstructures. Changes in mechanical properties such as phase microhardness, ultimate tensile strength, and yield strength in both types of steel were observed at aging temperatures of 25, 80, and 150°C. This aging is associated with dislocation structures formed on ferrite grains in the vicinity of ferrite/martensite interfaces during intercritical treatments, which become preferential sites for solute atom diffusion. © 1999 IoM Communications Ltd.