3 resultados para CARBON BUDGET
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Many efforts are currently oriented toward extracting more information from ocean color than the chlorophyll a concentration. Among biological parameters potentially accessible from space, estimates of phytoplankton cell size and light absorption by colored detrital matter (CDM) would lead to an indirect assessment of major components of the organic carbon pool in the ocean, which would benefit oceanic carbon budget models. We present here 2 procedures to retrieve simultaneously from ocean color measurements in a limited number of bands, magnitudes, and spectral shapes for both light absorption by CDM and phytoplankton, along with a size parameter for phytoplankton. The performance of the 2 procedures was evaluated using different data sets that correspond to increasing uncertainties: ( 1) measured absorption coefficients of phytoplankton, particulate detritus, and colored dissolved organic matter ( CDOM) and measured chlorophyll a concentrations and ( 2) SeaWiFS upwelling radiance measurements and chlorophyll a concentrations estimated from global algorithms. In situ data were acquired during 3 cruises, differing by their relative proportions in CDM and phytoplankton, over a continental shelf off Brazil. No local information was introduced in either procedure, to make them more generally applicable. Over the study area, the absorption coefficient of CDM at 443 nm was retrieved from SeaWiFS radiances with a relative root mean square error (RMSE) of 33%, and phytoplankton light absorption coefficients in SeaWiFS bands ( from 412 to 510 nm) were retrieved with RMSEs between 28% and 33%. These results are comparable to or better than those obtained by 3 published models. In addition, a size parameter of phytoplankton and the spectral slope of CDM absorption were retrieved with RMSEs of 17% and 22%, respectively. If these methods are applied at a regional scale, the performances could be substantially improved by locally tuning some empirical relationships.
Resumo:
The introduction of nitrogen fixing species (NFS) in fast-growing tree plantations is an alternative option to reduce fertilizer inputs. However, the success of mixed-species plantations depends on the balance between positive interactions among species (resulting from facilitation and/or complementarity) and the negative effects of interspecific competition.Using a carbon budget approach and coupling measurements of standing biomass, aboveground litterfall and soil CO2 efflux, we assessed the influence of replacing half of eucalypt trees by Acacia mangium on total belowground carbon flux (TBCF), net primary production (NPP) and its partitioning between above- and belowground growth at two tropical sites in Brazil (Itatinga) and in Congo (Kissoko) exhibiting contrasting climates, edaphic conditions and wood productions.Annual soil CO2 efflux (FS) was significantly lower in the acacia monocultures than in eucalypt monocultures and mixed-species stands at both sites. Annual FS was significantly lower at Itatinga compared to Kissoko for all stands while TBCF was significantly lower in the eucalypt stands only. In the eucalypt monocultures we found a significantly lower aboveground NPP (ANPP) and wood production (wood NPP) at Kissoko compared to Itatinga that was almost fully balanced by a significantly higher belowground NPP (BNPP), leading to similar NPP. Similarly, acacia monocultures exhibited significantly higher ANPP and wood NPP at Itatinga than at Kissoko. The mixed-species stands exhibited a significantly lower wood NPP and ANPP than the eucalypt monocultures at the Brazilian site while NPP of the mixture was not significantly different than the average NPP of the two monocultures. At the Congolese site, NPP of the mixture was significantly higher than the average NPP of the two monocultures. NPP was similar in the mixed-species stand and the eucalypt monoculture with a significantly lower partitioning of NPP to belowground production, leading to a one third higher wood biomass at harvest in the mixed-species stand.A positive effect of growing eucalypts with the nitrogen fixing acacia trees on stand wood production occurred at Kissoko but not at Itatinga. Mixed-species plantations with NFS can be advocated at sites where the productive gains resulting from nitrogen fixation are not compromised by other resource limitations. © 2012 Elsevier B.V.