39 resultados para Buriti
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
EICHEMBERG, M. T. and V. L. SCATENA (Universidade Estadual Paulista, Departamento de Botanica, Rio Claro, São Paulo, Brazil). J. Torrey Bot. Soc. 138:34-40. 2011.-Handicrafts from Jalapao (TO), Brazil, and their Relationship to Plant Anatomy. In the state of Tocantins, midwestern Brazil, communities from the region of Jalapao use scapes of "capim dourado" (golden grass - Syngonanthus nitens- Eriocaulaceae) and leaves of "buriti" (Mauritia flexuosa - Arecaceae) to make handicrafts (baskets and ornaments). The predominant biome of this area is cerrado (savanna), with a notable presence of buriti in the "veredas" (swampy forest-like vegetation), and of golden grass, which is one of the most common plants in humid grasslands. These traditional handicrafts represent a significant source of income for local communities. The whole scapes of Syngonanthus nitens are used due to their golden color, which is a reflection of such internal structures as thick walled cells and lignin in the epidermis and cortex. The strips called "seda" (silk) used to sew the scapes in the making of handicrafts come from young leaves of Mauritia,flexuosa. They are constituted by the adaxial epidermis and bundles of subepidermic fibers, both showing thick-walled cells. Since the cells of the bundles of sclerenchymatic fibers from the abaxial surface of buriti leaves present stegmata containing silica bodies, their mechanical properties are less adapted to the production of "silk", justifying the use of the leaf adaxial surface. Anatomical characteristics such as the thickening and composition of the cell walls of both species together with sociocultural factors, allow a better knowledge of the use of plant structures in the making of handicrafts.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Oils from Buriti (Mauritia flexuosa), Cupuacu (Theobroma grandiflora), Passion Fruit (Passiflora alata), Andiroba (Carapa gitianensis), Brazilian Nut (Bertholletia excelsa) and Babassu (Orbignya spp.) were evaluated as carbon sources for rhamnolipid production by Pseudomonas aeruginosa LBI. The highest rhamnolipid concentrations were obtained from Brazilian Nut (9.9 l(-1)) and Passion Fruit (9.2 g l(-1)) oils. Surface tension varied from 29.8 to 31.5 mN m(-1), critical micelle concentration from 55 to 163 mg l(-1) and the emulsifying activity was higher against toluene (93-100%) than against kerosene (70-92%). Preliminary characterization of the surfactant mixtures by mass spectrometry revealed the presence of two major components showing m/z of 649 and 503, which corresponded to the dirhamnolipid (Rha(2)C(10)C(10)) and the monorhamnolipid (RhaC(10)C(10)), respectively. The monorhamnolipid detected as the ion of m/z 503 is predominant in all samples analyzed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Brazil has a wide diversity of food sources of carotenoids. The updated Brazilian database consists of more than 270 items of fruits, vegetables and their prepared and processed products. The database demonstrates variations due to variety, maturity, production technique, climate and processing. Many of these foods are not found in the US and European databases. Good to rich sources (>20 μg/g) of β-carotene are: acerola, bocaiúva, mango 'Extreme' and tucumã. Sources of both α-carotene and β-carotene are buriti, carrot, Cucurbita moschata 'Menina Brasileira', 'Baianinha' and 'Goianinha', and red palm oil. Commercially produced and uncultivated or semi-cultivated leafy vegetables, C. maxima 'Jerimum Caboclo' and the hybrid Tetsukabuto, cooked broccoli are sources of lutein and β-carotene. The edible Tropaeolum majus flower is especially rich in lutein. Although many fruits have β-cryptoxanthin as principal carotenoid (e.g. caja, nectarine, peach, orange-fleshed papaya, tree tomato), the levels are below 20 μg/g. Good to rich sources of lycopene are guava and guava products, papaya, pitanga and pitanga juice, tomato and tomato products, and watermelon. Sources of zeaxanthin are rare; although the principal carotenoid of piqui, the amount is low, lower than that found in buriti.
Resumo:
The aim of this paper is to present the effects of social impacts of Petrobras/Six mining of oil shales over the rural community Dois Irmãos, located at Sao Mateus do Sul city, Paraná state. For making mining areas, PETROBRAS/SIX needs to expropriate areas of its interest. In 2010, for the implementation of the mine Dois Irmão, the last one, 90 families were evicted and they directly suffered the impacts of mining. Of these, 62 families were interviewed in order to investigate the main effects suffered with the expropriation. These results showed that the community had difficulties in upgrading its way of life in new places, experiencing how different types of problems were triggered from the loss of the lands.
Resumo:
The soybean culture is part of crop rotation used by irrigators from the southwestern region of São Paulo State that perform no-tillage soil management as a form of sustainable soil use. The objective of this work was to evaluate the effect of this conservationist practice on physicalhydric properties, soil compaction, root development, and soybean culture production components in relation to the conventional management. The experiment was conducted at the Buriti-Mirim Farm, Angatuba, SP, in Brazil, using an area irrigated by a center pivot system divided into two types of soil management: conventional and no-tillage. Although the no-tillage management presented higher soil density, lower water available and lower soil resistance to penetration, both soil managements showed no difference in relation to root development.