78 resultados para Buffer layers
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Structural, microstructural and ferroelectric properties of Pb0.90Ca0.10TiO3 (PCT10) thin films deposited using La0.50Sr0.50CoO3 (LSCO) thin films which serve only as a buffer layer were compared with properties of the thin films grown using a platinum-coated silicon substrate. LSCO and PCT10 thin films were grown using the chemical solution deposition method and heat-treated in an oxygen atmosphere at 700 °C and 650 °C in a tube oven, respectively. X-ray diffraction (XRD) and Raman spectroscopy results showed that PCT10 thin films deposited directly on a platinum-coated silicon substrate exhibit a strong tetragonal character while thin films with the LSCO buffer layer displayed a smaller tetragonal character. Surface morphology observations by atomic force microscopy (AFM) revealed that PCT10 thin films with a LSCO buffer layer had a smoother surface and smaller grain size compared with thin films grown on a platinum-coated silicon substrate. Additionally, the capacitance versus voltage curves and hysteresis loop measurement indicated that the degree of polarization decreased for PCT10 thin films on a LSCO buffer layer compared with PCT10 thin films deposited directly on a platinum-coated silicon substrate. This phenomenon can be described as the smaller shift off-center of Ti atoms along the c-direction 〈001〉 inside the TiO6 octahedron unit due to the reduction of lattice parameters. Remnant polarization (P r ) values are about 30 μC/cm2 and 12 μC/cm2 for PCT10/Pt and PCT10/LSCO thin films, respectively. Results showed that the LSCO buffer layer strongly influenced the structural, microstructural and ferroelectric properties of PCT10 thin films. © 2013 Elsevier Ltd and Techna Group S.r.l.
Resumo:
The sol-gel method combined with a spin-coating technique has been successfully applied for the preparation of rare-earth doped silica:germania films used for the fabrication of erbium-doped waveguide amplifiers (EDWA), presenting several advantages over other methods for the preparation of thin films. As with other methods, the sol-gel route also shows some drawbacks, such as cracks related to the thickness of silica films and high hydrolysis rate of certain precursors such as germanium alkoxides. This article describes the preparation and optical characterization of erbium and ytterbium co-doped SiO2:GeO2 crack-free thick films prepared by the sol-gel route combined with a spin-coating technique using a chemically stable non-aqueous germanium oxide solution as an alternative precursor. The non-crystalline films obtained are planar waveguides exhibiting a single mode at 1,550 nm with an average thickness of 3.9 mu m presenting low percentages of porosity evaluated by the Lorentz-Lorenz Effective Medium Approximation, and low stress, according to the refractive index values measured in both transversal electric and magnetic polarizations. Weakly confining core layers (0.3% < Delta n < 0.75%) were obtained according to the refractive index difference between the core and buffer layers, suggesting that low-loss coupling EDWA may be obtained. The life time of the erbium I-4(13/2) metastable state was measured as a function of erbium concentration in different systems and based on these values it is possible to infer that the hydroxyl group was reduced and the formation of rare-earth clusters was avoided.
Resumo:
We write the London limit of the Lawrence Doniach free energy in terms of the local magnetic field and of the average supercurrent over the interplane distance. Starting from this formulation we study a model where the supercurrent at the buffer layers is obtained from the superconducting sheets by a Taylor expansion. The continuum limit of this model gives corrections to the anisotropic London theory due to the layered structure.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, the electrochemical behavior of Cu-16(wt.%)Zn-6.5(wt.%)Al alloy containing the β'-phase (martensite) was studied in borate buffer solution (pH 8.4) by means of open-circuit potential (EOC), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The alloy EOC was -0.29 V vs. Hg/HgO/OH-, similar to that of pure copper in this medium, indicating that the processes which occur on the alloy surface are mainly governed by copper. EIS response was related to the dielectric and transmission properties of the complex oxide layer. The CVs showed peaks concerning the redox reactions for copper and zinc. These peaks were assigned to the formation and reduction of copper and zinc species. Furthermore, they showed that the copper oxidation was suppressed by the presence of zinc and aluminum in the alloy composition. The copper and zinc oxidation to form complex oxide layers and the reduction of the different metallic oxides generated in the anodic potential scan suggest that a solid state reaction could determine the metallic oxide formation. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study was designed to evaluate the effects of different fat sources on the performance, egg quality, and lipid profile of the egg yolks of layers in their second production cycle. The fat sources were cottonseed oil, soybean oil, lard, sunflower oil, or canola oil. Experimental diets were fed to postmolt ISA Brown layers at 70 wk of age and the experimental period was 74 to 86 wk of age. The different fat sources did not influence performance or eggshell quality, but lipid profile of the egg yolk changed as a function of dietary fat sources. In general, the best changes, such as lower level of saturated fatty acids, higher levels of alpha-linolenic acid and DHA, and lower linoleic acid levels, were promoted by the addition of canola oil, but it did not promote enrichment of the eggs with polyunsaturated fatty acids.
Resumo:
This study was carried out to evaluate the performance and egg quality of laying hens, in their second laying cycle submitted to different forced-molting methods and three environmental temperatures. Six hundred layers were distributed in a completely randomized experimental design with 15 treatments with five replicates of eight birds each, according to 5x3 factorial arrangement (molting methods vs. temperatures). The following forced-molting methods were applied: 90%, 70%, 50% dietary alfalfa inclusion, addition of 2,800 ppm zinc, and feed fasting. Temperatures were: 20 ºC, 27 ºC and 35 ºC. At the end of each period of the second laying cycle, bird performance and egg quality were evaluated. Data were submitted to analysis of variance and means were compared by orthogonal and polynomial contrasts. The highest alfalfa inclusion level (90% alfalfa and 10% basal diet) proved to be efficient as compared to the other methods, independently of temperature.
Resumo:
The aim of this research was to show the mathematical data obtained through the correlations found between the physical and chemical characteristics of casing layers and the final mushrooms' properties. For this purpose, 8 casing layers were used: soil, soil + peat moss, soil + black peat, soil + composted pine bark, soil + coconut fibre pith, soil + wood fibre, soil + composted vine shoots and, finally, the casing of La Rioja subjected to the ruffling practice. The conclusion that interplays in the fructification process with only the physical and chemical characteristics of casing are complicated was drawn. The mathematical data obtained in earliness could be explained in non-ruffled cultivation. The variability observed for the mushroom weight and the mushroom diameter variables could be explained in both ruffled and non-ruffled cultivations. Finally, the properties of the final quality of mushrooms were established by regression analysis.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The binding selectivity of the M(phen)(edda) (M = Cu, Co, Ni, Zn; phen = 1,10-phenanthroline, edda = ethylenediaminediacetic acid) complexes towards ds(CG)(6), ds(AT)(6) and ds(CGCGAATTCGCG) B-form oligonucleotide duplexes were studied by CD spectroscopy and molecular modeling. The binding mode is intercalation and there is selectivity towards AT-sequence and stacking preference for A/A parallel or diagonal adjacent base steps in their intercalation. The nucleolytic properties of these complexes were investigated and the factors affecting the extent of cleavage were determined to be: concentration of complex, the nature of metal(11) ion, type of buffer, pH of buffer, incubation time, incubation temperature, and the presence of hydrogen peroxide or ascorbic acid as exogenous reagents. The fluorescence property of these complexes and its origin were also investigated. The crystal structure of the Zn(phen)(edda) complex is reported in which the zinc atom displays a distorted trans-N4O2 octahedral geometry; the crystal packing features double layers of complex molecules held together by extensive hydrogen bonding that inter-digitate with adjacent double layers via pi...pi interactions between 1,10-phenanthroline residues. The structure is compared with that of the recently described copper(II) analogue and, with the latter, included in molecular modeling. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Injection-limited operation is identified in thin-film, alpha-NPD-based diodes. A detailed model for the impedance of the injection process is provided which considers the kinetics of filling/releasing of interface states as the key factor behind the injection mechanism. The injection model is able to simultaneously account for the steady-state, current-voltage (J-V) characteristics and impedance response. and is based on the sequential injection of holes mediated by energetically distributed surface states at the metal-organic interface. The model takes into account the vacuum level offset caused by the interface dipole, along with the partial shift of the interface level distribution with bias voltage. This approach connects the low-frequency (similar to 1 Hz) capacitance spectra, which exhibits a transition between positive to negative values, to the change in the occupancy of interface states with voltage. Simulations based on the model allow to derive the density of interface states effectively intervening in the carrier injection (similar to 5 x 10(12) cm(-2)), which exhibit a Gaussian-like distribution. A kinetically determined hole barrier is calculated at levels located similar to 0.4 eV below the contact work function. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Capacitance spectra of thin (< 200 nm) Alq(3) electron-only devices have been measured as a function of bias voltage. Capacitance spectra exhibit a flat response at high frequencies (> 10(3) Hz) and no feature related to the carrier transit time is observed. Toward low frequencies the spectra reach a maximum and develop a negative excess capacitance. Capacitance response along with current-voltage (J-V) characteristics are interpreted in terms of the injection of electrons mediated by surface states at the metal organic interface. A detailed model for the impedance of the injection process is provided that highlights the role of the filling/releasing kinetics of energetically distributed interface states. This approach connects the whole capacitance spectra to the occupancy of interface states, with no additional information about bulk trap levels. Simulations based on the model allow to derive the density of interface states effectively intervening in the carrier injection (similar to 1.5 x 10(12) cm (2)). (C) 2008 Elsevier B.V. All rights reserved.