179 resultados para Blue upconversion
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Bright blue upconversion emission by thulium ions in PbGeO3-PbF2-CdF2 glass triply doped with Nd3+-Tm3+-Yb3+ under diode laser excitation around 800 nm is reported. The results revealed that the Nd3+/Tm3+/Yb3+-codoped sample generated ten times more 475 nm blue upconversion fluorescence than the Yb3+-sensitized Tm3+-doped one, under the same excitation power. The upconversion process also showed a strong dependence upon the Yb3+ concentration. The results also indicated that the neodymium ions played a major role in the upconversion process by transfering the 800 nm excitation to thulium ions. The population of the Tm3+ ions (1)G(4) emitting level was accomplished through a multiion interaction involving ground-state absorption of pump photons around 800 nm by the Nd3+(I-4(9/2)-->H-2(9/2), F-4(5/2)) and Tm3+(H-3(6)-->F-3(4)) ions followed by energy-transfer processes involving the Nd3+-Yb3+(F-4(3/2), F-2(7/2)-->I-4(11/2), F-2(5/2)) and Yb3+-Tm3+(F-2(5/2), F-3(4)-->F-2(7/2), (1)G(4)) pairs. (C) 2003 American Institute of Physics.
Resumo:
Infrared-to-visible upconversion emission enhancement through thermal effects in Yb3+-sensitized Pr3+-doped fluoroindate glasses excited at 1.064 mu m is investigated. A twentyfold increase in the 485 nm blue emission intensity as the sample temperature was varied from 20 to 260 degrees C was observed. The visible upconversion fluorescence enhancement is ascribed to the temperature dependent multiphonon-assisted anti-Stokes excitation of the ytterbium sensitizer and excited-state absorption of the praseodymium acceptor. A model based upon conventional rate equations considering a temperature dependent effective absorption cross section for the F-2(7/2)-->F-2(5/2) transition of the Yb3+ and (1)G(4)-->P-3(0) excited-state absorption of the Pr3+, agrees very well with the experimental results. (C) 2000 American Institute of Physics. [S0021-8979(00)08209-8].
Resumo:
Red, green, and blue emission through frequency upconversion and energy-transfer processes in tellurite glasses doped with Tm3+ and Er3+ excited at 1.064 mum is investigated. The Tm3+/Er3+-codoped samples produced intense upconversion emission signals at around 480, 530, 550 and 660 nm. The 480 nm blue emission was originated from the (1)G(4)-->H-3(6) transition of the Tm3+ ions excited by a multiphoton stepwise phonon-assisted excited-state absorption process. The 5 30, 5 50 nm green and 660 mn red upconversion luminescences were identified as originating from the H-2(11/2), S-4(3/2) --> I-4(15/2) and F-4(9/2) --> I-4(15/2) transitions of the Er3+ ions, respectively, populated via efficient cross-relaxation processes and excited-state absorption. White light generation employing a single infrared excitation source is also examined. (C) 2003 Elsevier B.V. (USA). All rights reserved.
Resumo:
Blue, green, red, and near-infrared upconversion luminescence in the wavelength region of 480-740 nm in Pr3+/Yb3+-codoped lead-cadmium-germanate glass under 980 nm diode laser excitation, is presented. Upconversion emission peaks around 485, 530, 610, 645, and 725 nm which were ascribed to the P-3(0)-H-3(J) (J = 4, 5, and 6), and P-3(0)-F-3(J) (J = 2, 3, and 4), transitions, respectively, were observed. The population of the praseodymium upper P-3(0) emitting level was accomplished through a combination of ground-state absorption of Yb3+ ions at the F-2(7/2), energy-transfer Yb3+(2F(5/2))-Pr3+(H-3(4)), and excited-state absorption of Pr3+ ions provoking the (1)G(4)-P-3(0) transition. The dependence of the upconversion luminescence upon the Yb3+-concentration and diode laser power, is also examined, in order to subsidize the proposed upconversion excitation mechanism. (C) 2004 Elsevier B,V. All rights reserved.
Resumo:
We investigated near-infrared-to-blue upconversion from thulium (Tm 3+) doped in tellurite glasses upon continuous wave excitation near 800 nm. We observed an enhancement of over two orders of magnitude of the upconverted emission at ∼480nm when neodymium (Nd 3+) ions were codoped with Tm 3+ ions. For comparison, using a Tm 3+:Nd 3+ codoped fluorozirconate glass as a reference material we observed a 40-fold enhancement of the blue emission. Analysis of the blue emission for samples with different doping levels of Nd 3+ ions showed that energy transfer between Nd 3+ and Tm 3+ is the mechanism responsible for the enhancement in upconversion. © 2002 American Institute of Physics. © 2002 American Institute of Physics.
Resumo:
Blue, green, red, and near-infrared upconversion luminescence in the wavelength region of 480 - 740 nm in Pr3+/Yb3+-codoped lead-cadmium-germanate glass under 980 nm diode laser excitation, is presented. Upconversion emission peaks around 485, 530, 610, 645, and 725 nm which were ascribed to the 3P0 - 3HJ (J=4, 5, and 6), and 3P0 - 3FJ (J=2, and 3,4), transitions, respectively, were observed. The population of the praseodymium upper 3P0 emitting level was accomplished through a combination of ground-state absorption of Yb3+ ions at the 2F7/2, energy-transfer Yb3+(2F 5/2) Pr3+(3H4), and excited-state absorption of Pr3+ ions provoking the 1G4 - 3P0 transition. The dependence of the upconversion luminescence upon the Yb3+-concentration and diode laser power, is also examined, in order to subsidize the proposed upconversion excitation mechanism.
Resumo:
Efficient energy upconversion of cw radiation at 1.064 mum into blue, red, and near infrared emission in Tm3+-doped Yb3+-sensitized 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) glasses is reported. Intense blue upconversion luminescence at 485 nm corresponding to the Tm3+ (1)G(4)--> H-3(6) transition with a measured absolute power of 0.1 muW for 800 mW excitation power at room temperature is observed. The experimental results also revealed a sevenfold enhancement in the upconversion efficiency when the sample was heated from room temperature to 235 degreesC yielding 0.7 muW of blue absolute fluorescence power for 800 mW pump power. High brightness emission around 800 nm (F-3(4)--> H-3(6)) in addition to a less intense 655 nm ((1)G(4)--> H-3(4) and F-3(2,3)--> H-3(6)) fluorescence is also recorded. The energy upconversion excitation mechanism for thulium emitting levels is assigned to multiphonon-assisted anti-Stokes excitation of the ytterbium-sensitizer followed by multiphonon-assisted sequential energy-transfer processes. (C) 2001 American Institute of Physics.
Resumo:
We present recent results on frequency upconversion (UPC) obtained in fluoroindate glasses (FIG) doped with Ho3+, Tm3+ and Nd3+ ions and codoped with Pr3+/Nd3+ and Yb3+/Tb3+ ions. The results for the Ho3+-doped samples show strong evidence of energy transfer (ET) between Ho3+ ions resonantly excited at 640 nm. The origin of the blue-green upconverted fluorescence observed was identified and the dynamics of the signals revealed the pathways involved in the UPC process. In the case of Tm3+-doped FIG, the samples were resonantly excited at 650 nm and the main mechanism that contributes for the red-to-blue upconversion is excited-state absorption (ESA). The FIG samples codoped with Pr3+/Nd3+ were excited at 588 nm in resonance with transitions starting from the ground state of the Nd 3+ and the Pr3+ ions. It was observed that the presence of Nd3+ ions enhanced the Pr3+ emission at 480 nm by two orders of magnitude. Multiphonon (MP)-assisted upconversion is also discussed for Nd3+-doped FIG pumped at 866 nm. Emission at 750 nm with a peculiar linear dependence with the laser intensity was observed and explained. A rate-equation model that includes MP absorption via thermally coupled electronic excited states of Nd3+ was developed and describes well the experimental results. The role played by effective phonon modes is clearly demonstrated. MP-assisted UPC process was also studied in Yb3+/ Tb3+-codoped FIG samples excited at 1064 nm, which is off-resonance with electronic transitions starting from the ground state. It was determined that the mechanism leading to Tb3+ emission in the blue is due to ET from a pair of excited Yb3+ ions followed by ESA in the Tb 3+ ions. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS.
Resumo:
Blue luminescence emission around 480 nm through cooperative upconversion from pairs of Yb3+ ions implanted into 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) tellurite glasses and excited by a cw laser at 1.064 mum is demonstrated. Cooperative luminescence emission enhancement owing to the temperature dependent multiphonon-assisted anti-Stokes excitation process of the ytterbium ions is also observed. The experimental results revealed a fourfold enhancement in the cooperative luminescence emission when the sample was heated in the temperature range of 20 degreesC-260 degreesC. The thermally induced enhancement is assigned to the effective absorption cross-section for the ytterbium ions which is an increasing function of the medium temperature. (C) 2002 American Institute of Physics.
Resumo:
Frequency upconversion luminescence in erbium-doped PbGeO3-PbF2-CdF2-based transparent glass ceramics (TGC) under 980 nm infrared excitation is investigated. Upconversion emission signals around 410, 525, 550, 660, and 850 nm were generated and identified as due to the H-2(9/2) H-2(11/2), S-4(3/2), and F-4(9/2) transitions to the I-4(15/2) ground-state, and S-4(3/2)-I-4(13/2), respectively. The erbium ions excited-state emitting levels were populated via a combination of stepwise ground-state absorption (GSA), excited-state absorption (ESA), and cross-relaxation processes. The results also disclosed that both blue (410 nm) and red (660 nm) upconversion emission signals in the transparent glass ceramic sample presented twice as much intensity as compared to its vitreous counterpart. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Infrared-to-visible upconversion luminescence emission in Nd3+-doped 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) tellurite glasses under cw excitation around 800 nm is investigated. Blue (430, and 475 nm), green (5 0 nm) and yellow-orange (590 nm) energy upconversion emission owing to the P-2(1/2) --> I-4(j) (j=9/2, 11/2, 13/2 and 15/2) transitions of the Nd3+ ions, respectively, was recorded. The dependence of the upconversion intensity upon the excitation wavelength and pump power is also studied. The upconversion excitation mechanism responsible for the observed emission signals is attributed to stepwise multiphoton absorption. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
70SiO(2)-30HfO(2) mol% planar waveguides, doped with Er3+ with concentrations ranging from 0.3 to 2 mol% were prepared by sol-gel route, using dip-coating deposition on vitreous-SiO2 substrates. Infrared-to-visible upconversion emission, upon excitation at 980 nm, has been observed for all the samples. The upconversion results in green, red and blue emissions. The investigation of the upconversion dynamic as a function of the Er3+ concentration and excitation power, show that processes such as excited state absorption and energy transfer upconversion are effective. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Energy transfer excited multiwavelength visible upconversion emission and white light generation is described in a single sample of PbGeO(3)-PbF(2)-CdF(2) glass-ceramic triply doped With Ho/Tm/Yb under single infrared laser excitation. Blue (475 nm), green (540 mn), and red (650 nm), upconversion luminescence signals are generated, and the emissions are assigned, respectively, to thulium ((1)G(4)-(3)H(6)), and holmium ((5)S(2);(5)F(4)) -> (5)I(8), (5)F(5) -> (5)I(8)) ions transitions, both excited via successive energy transfers from ytterbium ions. It is experimentally shown that with a proper combination of the rare earth ions contents, white light may be produced, with the simultaneous generation of fluorescence with controllable intensities at the wavelengths of the three primary colours in a single sample and using a single near-infrared excitation source.
Resumo:
Energy-transfer excited upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+ -codoped PbGeO3-PbF2-CdF2 glass and glass-ceramic under infrared excitation is investigated. In Ho3+/Yb3+-codoped samples, green (545 nm), red (652 nm), and near-infrared (754 nm) upconversion emission corresponding to the S-5(2) (F-5(4)) -> I-5(8), F-5(5) -> I-5(8), and S-5(2)(F-5(4)) -> I-5(7) transitions, respectively, was observed. Blue (490 nm) emission assigned to the F-5(2,3) -> I-5(8) transition was also detected. In the Tb3+/Yb3+-codoped system, bright UV-visible emission around 384, 415, 438, 473-490, 545, 587, and 623 nm, identified as due to the D-5(3)((5)G(6)) -> F-7(J)(J = 6, 5, 4) and D-5(4) -> F-7(J)(J = 6, 5, 4, 3) transitions, was measured. The comparison of the upconversion process in glass ceramic and its glassy precursor revealed that the former samples present much higher upconversion efficiencies. The dependence of the upconversion emission upon pump power, and doping contents was also examined. The results indicated that successive energy-transfer between ytterbium and holmium ions and cooperative energy-transfer between ytterbium and terbium ions followed by excited-state absorption are the dominant upconversion excitation mechanisms herein involved. The viability of using the samples for three-dimensional solid-state color displays is also discussed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Enhanced frequency upconversion (UC) emission was studied in Yb3+/Er3+ co-doped PbO-GeO2 glass containing silver nanoparticles (NPs). Optical excitation was achieved with a laser operating at 980 nm in resonance with the Yb3+ transition F-4(5/2)-> F-4(7/2). The intensity of the whole UC spectrum from 400 to 700 nm was intensified due to the influence of silver NPs. The green and red emissions were enhanced by more than 300%. Emission bands centered at 408 nm and 480 nm were also detected corresponding to the H-2(9/2)-> I-4(15/2) and F-4(7/2)-> I-4(15/2) transitions of Er3+ ion. An intensity enhancement of approximate to 150% due to the NPs was measured. For the first time the influence of silver NPs on the blue emission of Yb3+/Er3+ co-doped PbO-GeO2 glass is reported. The large enhancement in the whole UC spectrum is due to the increased local field in the Er3+ ions locations and the proximity between the luminescence wavelengths and the NPs surface plasmon resonance. (C) 2010 Elsevier B.V. All rights reserved.