25 resultados para Block theory (Rock mechanics)
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The major contribution of this paper relates to the practical advantages of combining Ground Control Points (GCPs), Ground Control Lines (GCLs) and orbital data to estimate the exterior orientation parameters of images collected by CBERS-2B (China-Brazil Earth Resources Satellite) HRC (High-resolution Camera) and CCD (High-resolution CCD Camera) sensors. Although the CBERS-2B is no longer operational, its images are still being used in Brazil, and the next generations of the CBERS satellite will have sensors with similar technical features, which motivates the study presented in this paper. The mathematical models that relate the object and image spaces are based on collinearity (for points) and coplanarity (for lines) conditions. These models were created in an in-house developed software package called TMS (Triangulation with Multiple Sensors) with multi-feature control (GCPs and GCLs). Experiments on a block of four CBERS-2B HRC images and on one CBERS-2B CCD image were performed using both models. It was observed that the combination of GCPs and GCLs provided better bundle block adjustment results than conventional bundle adjustment using only GCPs. The results also demonstrate the advantages of using primarily orbital data when the number of control entities is reduced. © 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).
Resumo:
This paper presents a method for indirect orientation of aerial images using ground control lines extracted from airborne Laser system (ALS) data. This data integration strategy has shown good potential in the automation of photogrammetric tasks, including the indirect orientation of images. The most important characteristic of the proposed approach is that the exterior orientation parameters (EOP) of a single or multiple images can be automatically computed with a space resection procedure from data derived from different sensors. The suggested method works as follows. Firstly, the straight lines are automatically extracted in the digital aerial image (s) and in the intensity image derived from an ALS data-set (S). Then, correspondence between s and S is automatically determined. A line-based coplanarity model that establishes the relationship between straight lines in the object and in the image space is used to estimate the EOP with the iterated extended Kalman filtering (IEKF). Implementation and testing of the method have employed data from different sensors. Experiments were conducted to assess the proposed method and the results obtained showed that the estimation of the EOP is function of ALS positional accuracy.
Resumo:
Pós-graduação em Física - IFT
Resumo:
We present a new method to construct the exactly solvable PT-symmetric potentials within the framework of the position-dependent effective mass Dirac equation with the vector potential coupling scheme in 1 + 1 dimensions. In order to illustrate the procedure, we produce three PT-symmetric potentials as examples, which are PT-symmetric harmonic oscillator-like potential, PT-symmetric potential with the form of a linear potential plus an inversely linear potential, and PT-symmetric kink-like potential, respectively. The real relativistic energy levels and corresponding spinor components for the bound states are obtained by using the basic concepts of the supersymmetric quantum mechanics formalism and function analysis method. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Many years ago Zel'dovich showed how the Lagrange condition in the theory of differential equations can be utilized in the perturbation theory of quantum mechanics. Zel'dovich's method enables us to circumvent the summation over intermediate states. As compared with other similar methods, in particular the logarithmic perturbation expansion method, we emphasize that this relatively unknown method of Zel'dovich has a remarkable advantage in dealing with excited stares. That is, the ground and excited states can all be treated in the same way. The nodes of the unperturbed wavefunction do not give rise to any complication.
Resumo:
The paper presents a methodology to model three-dimensional reinforced concrete members by means of embedded discontinuity elements based on the Continuum Strong Discontinuous Approach (CSDA). Mixture theory concepts are used to model reinforced concrete as a 31) composite material constituted of concrete with long fibers (rebars) bundles oriented in different directions embedded in it. The effects of the rebars are modeled by phenomenological constitutive models devised to reproduce the axial non-linear behavior, as well as the bond-slip and dowel action. The paper presents the constitutive models assumed for the components and the compatibility conditions chosen to constitute the composite. Numerical analyses of existing experimental reinforced concrete members are presented, illustrating the applicability of the proposed methodology.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the last decades, the study of nonlinear one dimensional lattices has attracted much attention of the scientific community. One of these lattices is related to a simplified model for the DNA molecule, allowing to recover experimental results, such as the denaturation of DNA double helix. Inspired by this model we construct a Hamiltonian for a reflectionless potential through the Supersymmetric Quantum Mechanics formalism, SQM. Thermodynamical properties of such one dimensional lattice are evaluated aming possible biological applications.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We propose a framework to renormalize the nonrelativistic quantum mechanics with arbitrary singular interactions. The scattering equation is written to have one or more subtraction in the kernel at a given energy scale. The scattering amplitude is the solution of a nth order derivative equation in respect to the renormalization scale, which is the nonrelativistic counterpart of the Callan-Symanzik formalism, Scaled running potentials for the subtracted equations keep the physics invariant fur a sliding subtraction point. An example of a singular potential, that requires more than one subtraction to renormalize the theory is shown. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We consider the scattering of a photon by a weak gravitational field, treated as an external field, up to second order of the perturbation expansion. The resulting cross section is energy dependent which indicates a violation of Galileo's equivalence principle (universality of free fall) and, consequently, of the classical equivalence principle. The deflection angle theta for a photon passing by the sun is evaluated afterward and the likelihood of detecting Delta theta/theta(E) theta-theta(E)/theta(E) (where theta(E) is the value predicted by Einstein's geometrical theory for the light bending) in the foreseeable future, is discussed.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work, the plate bending formulation of the boundary element method (BEM) based on the Reissner's hypothesis is extended to the analysis of zoned plates in order to model a building floor structure. In the proposed formulation each sub-region defines a beam or a slab and depending on the way the sub-regions are represented, one can have two different types of analysis. In the simple bending problem all sub-regions are defined by their middle surface. on the other hand, for the coupled stretching-bending problem all sub-regions are referred to a chosen reference surface, therefore eccentricity effects are taken into account. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. The bending and stretching values defined on the interfaces are approximated along the beam width, reducing therefore the number of degrees of freedom. Then, in the proposed model the set of equations is written in terms of the problem values on the beam axis and on the external boundary without beams. Finally some numerical examples are presented to show the accuracy of the proposed model.
Resumo:
In this work, the plate bending formulation of the boundary element method (BEM), based on the Reissner's hypothesis, is extended to the analysis of plates reinforced by rectangular beams. This composed structure is modelled by a zoned plate, being the beams represented by narrow sub-regions with larger thickness. The integral equations are derived by applying the weighted residual method to each sub-region, and summing them to get the equation for the whole plate. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. In order to decrease the number of degrees of freedom, some approximations are considered for both displacements and tractions along the beam width. The accuracy of the proposed model is illustrated by simple examples whose exact solution are known as well as by more complex examples whose numerical results are compared with a well-known finite element code.