100 resultados para Biotransformation enzymes

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biodiesel fuel is gradually replacing petroleum-based diesel oil use. Despite the biodiesel being considered friendlier to the environment, little is known about its effects in aquatic organisms. In this work we evaluated whether biodiesel exposure can affect oxidative stress parameters and biotransformation enzymes in armored catfish (Pterygoplichthys anisitsi, Loricariidae), a South American endemic species. Thus, fish were exposed for 2 and 7d to 0.01mLL-1 and 0.1mLL-1 of pure diesel, pure biodiesel (B100) and blends of diesel with 5% (B5) and 20% (B20) biodiesel. Lipid peroxidation (malondialdehyde) levels and the activities of the enzymes glutathione S-transferase, superoxide dismutase, catalase and glutathione peroxidase were measured in liver and gills. Also, DNA damage (8-oxo-7, 8-dihydro-2'-deoxyguanosine) levels in gills and 7-ethoxyresorufin-O-deethylase activity in liver were assessed. Pure diesel, B5 and B20 blends changed most of the enzymes tested and in some cases, B5 and B20 induced a higher enzyme activity than pure diesel. Antioxidant system activation in P. anisitsi was effective to counteract reactive oxygen species effects, since DNA damage and lipid peroxidation levels were maintained at basal levels after all treatments. However, fish gills exposed to B20 and B100 presented increased lipid peroxidation. Despite biodiesel being more biodegradable fuel that emits less greenhouse gases, the increased lipid peroxidation showed that biofuel and its blends also represent hazards to aquatic biota. © 2013 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The physiological control to support the absence of O2 for long periods of diving, and oxidative damage impact caused by the whole process of hypoxia/reperfusion in freshwater turtles is well known. However, effects of contaminants may act as co-varying stressors and cause biological damage, disrupting the hypoxia/reperfusion oxidative damage control. In order to investigate the action of environmental stressors present in domestic or industrial wastewater effluent, we performed a biochemical analysis of biotransformation enzymes, oxidative stress, as well as neuromuscular, physiological and morphological parameters in Phrynops geoffroanus, an hypoxic-tolerant freshwater turtle endemic of South America, using animals sampled in urban area, contaminated by sewage and industrial effluents and animals sampled in control area. Here we demonstrate the physiological and biochemical impact caused by pollution, and the effect that these changes cause in antioxidant activity. Animals from the urban area exhibited higher EROD (ethoxyresorufin-O-deethylase, CYP1A1), GST (glutathione S-transferase), G6PDH (glucose-6-phosphate deshydrogenase), AChE (acetilcholinesterase) activities and also TEAC (trolox-equivalent antioxidant capacity) and TBARS (thiobarbituric acid reactive substances) values. We examined whether two morphometric indices (K - condition factor and HIS - hepatosomatic index) which help in assessing the general condition and possible liver disease, respectively, were modified. The K of the urban animals was significantly decreased compared to the control animals, but the HIS value was increased in animals from the urban area, supporting the idea of an impact in physiology and life quality in the urban freshwater turtles. We propose that this freshwater turtle specie have the ability to enhance its antioxidants defenses in order to protect from tissue damage caused by hypoxia and reperfusion, but also that caused by environmental contamination and that the oxidative damage control in hypoxic conditions has resulted in an adaptive condition in hypoxic-tolerant freshwater turtle species, in order to better tolerate the release of contaminated effluents resulting from human activity. © 2013 Elsevier Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the sexual hormones the estrogens are receiving major attention due to their biological activity. Such biological response is atributed to the best conformation recognized by their receptors, resulting in maximum responses. The estrogens are also considered responsible for most of disruptor´s effects caused by their presence in aquatic ecosystems. The 17β-estradiol hormone is produced by vertebrates during the reproductive phase of their lives and its presence has been detected in superficial waters. The objective of this study was to evaluate the cause-effect of tilapia exposition to the hormone 17β-estradiol through the analysis of biotransformation enzymes in liver and gills, complemented with the quantification of 17β-estradiol and estrone in water samples collected from fish ponds integrated to swine production. The present study was conducted under laboratory conditions, in a randomized experimental design with three levels of 17β-estradiol (E2) (0, 5, 15 µg L-1), with three replicates. After 7 days of exposure time, liver and gills were extracted to analyze three isoforms of cytochrome P450: EROD, BROD, PROD and the activity of Glutathione S-Transferase (GST). The results showed that the EROD activity (CYP1A), normally induced by the metabolism of aromatic compounds, did not present statistical differences among the treatments exposed to E2, what means that the hormone did not induce isoform 1A in fish under these particular experimental conditions. PROD activity was significantly altered in both concentrations, by means of 5 and 15 µg L-1, when compared to control. This result can indicate an important role of PROD on the metabolism of E2 present in water. Regarding to the BROD activity, it could be observed differences statistically significant between control and both groups of treatments. Two or more CYP isoforms can contribute to the metabolism of the same compound, what makes BROD a candidate as a next bioindicator of the exposure to E2 in aquatic ecosystems. Analysis of variance could confirm the effect of E2 statistically significant on the GST activity in liver tissues with >90% of significance (Prob>F = 0.0753). Furthermore, it was possible to observe that the values of GSTs activities in liver and gills in both, control and treatments, follow a tendency, that means, enzymatic activity in gills increase as the increasing of the activity in the liver tissues. In this study, the 17β–estradiol was found in measurable concentrations in three sampled points, and these values were similar to the findings of other authors at different locations in Brazil. In addition, those values are much higher than the minimum concentration that presented observable effects (10 ng L-1).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the aquatic environment, biotransformation enzymes are established biomarkers for assessing PAH exposure in fish, but little is known about the effect of 17β-estradiol (E2) on these enzymes during exposure to benzo(a)pyrene (BaP). In this study, Nile tilapia (Oreochromis niloticus) were exposed for 3, 5, and 10 days to BaP (300 μg L(-1)) and E2 (5 μg L(-1)). These substances were applied isolated or mixed. In the mixture experiment, fish were analyzed pre- and postexposure in order to better understand whether preexposure to the hormone masks the responses activated by PAH or vice versa. Phase I enzymes ethoxyresorufin-O-deethylase (EROD), pentoxyresorufin-O-depenthylase (PROD), and benzyloxyresorufin-O-debenzylase (BROD) activities as well as the phase II enzyme glutathione S-transferase (GST) were analyzed. Isolated E2 treatment decreased EROD activity after 3 days, but this enzyme activity returned to control values after 5 and 10 days of exposure. Isolated BaP treatment significantly induced EROD activity after 3 and 5 days, and the activity returned to control levels after ten exposure days. Combined treatment (E2 + Bap) significantly increased EROD activity, both in the pre- and postexposure. This increase was even higher than in the isolated BaP treatment, suggesting a synergism between these two compounds. When E2 and BaP were used singly, they did not change BROD and PROD activities. However, combined treatment (E2 + Bap) significantly increased PROD activity. Isolated BaP treatment increased GST activity after 10 days. However, this response was not observed in the mixture treatment, suggesting that E2 suppressed the GST induction modulated by BaP. The results put together indicated that E2 altered the biotransformation pathway regarding enzymes activated by BaP in Nile tilapia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A mutant that exhibited increased melanin pigment production was isolated from Aspergillus nidulans fungus. This pigment has aroused biotechnological interest due to its photoprotector and antioxidant properties. In a recent study, we showed that melanin from A. nidulans also inhibits NO and TNF-α production. The present study evaluates the mutagenicity and cytotoxicity of melanin extracted from A. nidulans after its exposure to liver S9 enzymes. The cytotoxicity of multiple concentrations of melanin (31.2-500 μg/mL) against the McCoy cell line was evaluated using the Neutral Red assay, after incubation for 24 h. Mutagenicity was assessed using the Ames test with the Salmonella typhimurium strains TA98, TA97a, TA100, and TA102 at concentrations ranging from 125 μg/plate to 1 mg/plate after incubation for 48 h. The cytotoxicity of A. nidulans melanin after incubation with S9 enzymes was less than (CI50 value= 413.4 ± 3.1 μg/mL) that of other toxins, such as cyclophosphamide (CI50 value = 15 ± 1.2 μg/mL), suggesting that even the metabolised pigment does not cause significant damage to cellular components at concentrations up to 100 μg/mL. In addition, melanin did not exhibit mutagenic properties against the TA 97a, TA 98, TA 100, or TA 102 strains of S. typhimurium, as shown by a mutagenic index (MI)  <2 in all assays. The significance of these results supports the use of melanin as a therapeutic reagent because it possesses low cytotoxicity and mutagenic potential, even when processed through an external metabolising system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)