22 resultados para Biomimetic sensor

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exploitation of the electronic properties of carbon nanotubes for the development of voltammetric and amperometric sensors to monitor analytes of environmental relevance has increased in recent years. This work reports the development of a biomimetic sensor based on a carbon paste modified with 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin iron (III) chloride (a biomimetic catalyst of the P450 enzyme) and multi-wall carbon nanotubes (MWCNT), for the sensitive and selective detection of the herbicide 2,4- dichlorophenoxyacetic acid (2,4-D). The sensor was evaluated using cyclic voltammetry and amperometry, for electrochemical characterization and quantification purposes, respectively. Amperometric analyses were carried out at -100 mV vs. Ag/AgCl(KClsat), using a 0.1 mol L-1 phosphate buffer solution at pH 6.0 as the support electrolyte. Under these optimized analytical conditions, the sensor showed a linear response between 9.9 × 10-6 and 1.4 × 10-4 mol L-1, a sensitivity of 1.8 × 104 (±429) μA L mol -1, and limits of detection and quantification of 2.1 × 10 -6 and 6.8 × 10-6 mol L-1, respectively. The incorporation of functionalized MWCNT in the carbon paste resulted in a 10-fold increase in the response, compared to that of the biomimetic sensor without MWCNT. In addition, the low applied potential (-100 mV) used to obtain high sensitivity also contributed to the excellent selectivity of the proposed sensor. The viability of the application of this sensor for analysis of soil samples was confirmed by satisfactory recovery values, with a mean of 96% and RSD of 2.1% (n = 3). © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A biomimetic sensor is proposed as a promising new analytical method for determination of norfloxacin (NF) in pharmaceuticals. The sensor was prepared by modifying a glassy carbon electrode surface with a Nafion® membrane doped with poly(copper phthalocyanine) complex [poly-CuPc]. Amperometric measurements carried out with the sensor under an applied potential of -0.05 V vs Ag|AgCl in 0.1 mol L-1 acetic acid containing 1.5 × 10-3 mol L-1 hydrogen peroxide showed a linear response range from 2.0 × 10-4 to 1.2 × 10-3 mol L-1. Selectivity and interference studies were also performed. A sensor response mechanism is proposed, based on the experimental evidence. Recovery studies were carried out using environmental samples, in order to evaluate the sensor’s potential for use with these sample classes. Finally, sensor performance was evaluated using analyses of commercial formulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new selective sensor based on molecularly imprinted polymers (MIPs) was developed for the determination of hexazinone (HXZ) in environmental samples. MIPs were synthesized using a non-covalent approach, and selection of the monomers employed in the polymerization reaction was carried out by molecular modeling. Three functional monomers with high (2-vinylpyridine (MP17)) and intermediate (methacrylic acid (MP12) and acrylamide (MP5)) energies of binding to the template (HXZ) were selected for preparation of the MIPs, in order to conduct comparative studies and validate the theoretical data. For sensor construction, carbon pastes were modified with each MIP or NIP (non-imprinted polymer), and HXZ determination was performed using differential pulse adsorptive cathodic stripping voltammetry (DPAdCSV). All parameters affecting the sensor response were optimized. In HCl at pH 2.5, the sensor prepared with MP17 (5% w/w in the paste) showed a dynamic linear range between 1.9 × 10−11 and 1.1 × 10−10 mol L−1, and a detection limit of 2.6 × 10−12 mol L−1, under the following conditions: accumulation time of 200 s at a potential of −0.5V, scan rate of 50 mVs−1, pulse amplitude of 60 mV, and pulse width of 50 ms. The sensor was selective in the presence of other similar compounds, and was successfully applied to the analysis of HXZ in river water samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work describes the construction and application of a biomimetic sensor for paracetamol determination in different samples. The sensor was prepared by modifying a glassy carbon electrode surface with a Nafion (R) membrane doped with FeTPyPz. The best performance of the sensor in 0.1 mol L-1 acetate buffer was at pH 3.6. Under these conditions, an oxidation potential of paracetamol was observed at 445 mV vs. Ag vertical bar AgCl. The sensor presented a linear response range between 4.0 and 420 mu mol L-1, a sensitivity of 46.015 mA L mol(-1) cm(-2), quantification and detection limits of 4.0 mu mol L-1 and 1.2 mu mol L-1, respectively. A detailed investigation about its electrochemical behavior and selectivity was carried out. The results suggested that FeTPyPz presents catalytic properties similar to P450 enzyme for paracetamol oxidation. Finally, the sensor was applied for paracetamol determination in commercial drugs and for the monitoring of its degradation in an electrochemical batch reactor effluent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A biomimetic sensor based on a carbon paste electrode modified with the nickel(II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine complex was developed as a reliable alternative technique for the sensitive and selective analysis of the herbicide diuron in environmental media. The sensor was evaluated using cyclic voltammetry and amperometric techniques. The best amperometric responses were obtained at 750 mV vs. Ag/AgCl (KClsat), using 0.1 mol L-1 phosphate buffer solution at pH 8.0. Under these conditions, the sensor showed a linear response for diuron concentrations between 9.9 × 10-6 and 1.5 × 10-4 mol L -1, a sensitivity of 22817 (±261) μA L mol-1, and detection and quantification limits of 6.14 × 10-6 and 2 × 10-5 mol L-1, respectively. The presence of the nickel complex in the carbon paste improved selectivity, stability, and sensitivity (which increased 700%), compared to unmodified paste. The applicability of the sensor was demonstrated using enriched environmental samples (river water and soil). © 2012 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)