56 resultados para Biomaterials for bone replacement
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
OBJETIVO: Avaliar a capacidade osteo-regenerativa de dois biomateriais utilizando um modelo de defeito segmentar efetuado nas diáfises do rádio de coelhos. MÉTODOS: O defeito direito foi preenchido com pool de proteínas morfogenéticas ósseas (pBMPs) e hidroxiapatita em pó ultrafina absorvível (HA) combinada com matriz óssea inorgânica desmineralizada e colágeno, derivados do osso bovino (Grupo A). O defeito esquerdo foi preenchido com matriz óssea desmineralizada bovina com pBMPs e hidroxiapatita em pó ultrafina absorvível (Grupo B). em ambos os defeitos utilizou-se membrana reabsorvível de cortical bovina desmineralizada para reter os biomateriais no defeito ósseo e guiar a regeneração tecidual. Os coelhos foram submetidos à eutanásia aos 30, 90 e 150 dias após a cirurgia. Foram efetuados exames radiográficos, tomográficos e histológicos em todos os espécimes. RESULTADOS: Aos 30 dias de pós-cirúrgico, o osso cortical desmineralizado foi totalmente reabsorvido em ambos os grupos. A HA tinha reabsorvido nos defeitos do Grupo A, mas persistiu nos do Grupo B. Uma reação de corpo estranho foi evidente com ambos os produtos, porém mais pronunciada no Grupo B. Aos 90 dias os defeitos do grupo B tinham mais formação óssea que os do Grupo A. Entretanto, aos 150 dias após a cirurgia, nenhum tratamento havia promovido o completo reparo do defeito. CONCLUSÃO: Os biomateriais testados contribuíram pouco ou quase nada para a reconstituição do defeito segmentar.
Resumo:
The bovine bone and sintetic hydroxyapatite (HA) bioceramics are reference materials to employment as a bone substitute, however, their slow rate of degradation and its low rate of bioactivity index (Ib) are presented as limiting factors for application as bone graft. In contrast, the bioglass is a resorbable and osteoinductive material. the present work objective the development of composites of dispersed bovine bone or sintetic HA in silicate-phosphate bioglass, seeking to obtain a biomaterial with properties suitable for application as bone grafts. The composites were prepared by mixing between the powder components followed by sintering for 1h. Were used HA and bioglass (45S5) with particle size <240μm. The tested proportions of HA/45S5 were 20/80, 30/70 and 40/60 (wt%). The composites characterization was made employing scanning electron microscopy, Infra-Red Spectrometry and hydrolytic resistance test. The test results indicate the potential use of the materials developed for applications such as bone graft. © (2012) Trans Tech Publications, Switzerland.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
For decades the Hydroxyapatite (HA) was only bioceramic of calcium phosphate system used for bone replacement and regeneration, due to its similarity to the mineral phase of bones and teeth. Because its slow degradation, other calcium phosphate classified as biodegradable started to awaken interest, such as: amorphous calcium phosphate (ACP), octacalcium phosphate (OCP) and tricalcium phosphate (TCP). This work presents the evolution of the use of other calcium phosphates due to their better solubility than the HA, comparing their main physical-chemical and biological properties. Are also presented the main methods used to obtain bioceramic coatings on metal and polymer surfaces.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Placement of implants in fresh sockets is an alternative to try to reduce physiological resorption of alveolar ridge after tooth extraction. This surgery can be used to preserve the bone architecture and also accelerate the restorative procedure. However, the diastasis observed between bone and implant may influence osseointegration. So, autogenous bone graft and/or biomaterials have been used to fill this gap. Considering the importance of bone repair for treatment with implants placed immediately after tooth extraction, this study aimed to present a literature review about biomaterials surrounding immediate dental implants. The search included 56 articles published from 1969 to 2012. The results were based on data analysis and discussion. It was observed that implant fixation immediately after extraction is a reliable alternative to reduce the treatment length of prosthetic restoration. In general, the biomaterial should be used to increase bone/implant contact and enhance osseointegration.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nanostructured calcium phosphate (CaP) has been histologically and biomechanically proven to enhance osseointegration of implants; however, conventional techniques were not sufficiently sensitive to capture its biological effects fully. Here, we compared the conventional removal torque (RTQ) evaluation and gene expression in tissues around nanostructured CaP-coated implants, using real-time RT-PCR, with those of uncoated implants, in a rabbit model. At 2 wks, RTQ values were significantly higher, alkaline phosphatase (ALP) expression was significantly higher, and runt-related transcription factor 2 and tumor necrosis factor-alpha expressions were significantly lower in the coated than in the uncoated implants. This indicates that inflammatory responses were suppressed and osteoprogenitor activity increased around the CaP-coated surface. At 4 wks, although RTQ values did not significantly differ between the 2 groups, ALP and osteocalcin (OCN) were significantly up-regulated in the coated group, indicating progressive mineralization of the bone around the implant. Moreover, an osteoclast marker, adenosine triphosphatase, which indicates acidification of the resorption lacunae, was significantly higher for the coated implants, suggesting gradual resorption of the CaP coating. This study reveals detailed genetic responses to nanostructured CaP-coated implants and provides evidence that the effect of nanotopography is significant during the osseointegration cascade.
Resumo:
The aim of the study was to evaluate wound healing repair of dental sockets after topical application of 5% epsilon-aminocaproic acid (EACA) and the use of fibrin adhesive implant in rats under anticoagulant therapy with warfarin. Sixty Albinus wistar rats were used, divided into three groups of 20. In Group I, the animals were given 0.1 mL/100 mg of 0.9% saline solution per day, beginning 6 days before dental extraction and continuing throughout the experimental period. In Group II, the animals received 0.03 mL of sodium warfarin daily, beginning 6 days before the surgery and continuing until the day of sacrifice; after tooth extractions, the sockets were filled with fibrin adhesive material. In Group III the animals were treated as in Group II, and after extractions, the sockets were irrigated with 5 mL of 5% EACA and filled with the same fibrin adhesive material. All groups presented biological phases of wound healing repair, the differences being evident only in the chronology. The results obtained in Group III were very similar to those of Group I in the last period of wound repair, whereas Group II presented a late chronology compared to the other groups. © 2005 Wiley Periodicals, Inc.
Resumo:
Seventy-two male albino rats received autogenous transplants of glycerol-preserved rib cartilage into the malar process. The animals were divided into two groups which received preserved cartilage with or without perichondrium. The implants were well tolerated and removal of the perichondrium enhanced the rate of resorption and bone replacement of the material.
Resumo:
This paper presents an individual designing prosthesis for surgical use and proposes a methodology for such design through mathematical extrapolation of data from digital images obtained via tomography of individual patient's bones. Individually tailored prosthesis designed to fit particular patient requirements as accurately as possible should result in more successful reconstruction, enable better planning before surgery and consequently fewer complications during surgery. Fast and accurate design and manufacture of personalized prosthesis for surgical use in bone replacement or reconstruction is potentially feasible through the application and integration of several different existing technologies, which are each at different stages of maturity. Initial case study experiments have been undertaken to validate the research concepts by making dimensional comparisons between a bone and a virtual model produced using the proposed methodology and a future research directions are discussed.