173 resultados para Biodiesel and Crambe

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fourier Transform Infrared Photoacoustic Spectroscopy was used to determine the mid-infrared vibrational modes of biodiesel and vegetable oils. Our results indicate that this method can contribute significantly to the biodiesel wash process during the sample preparation. Besides, by analyzing the spectra of vegetable oils used to fry snacks we could to monitor the degradation in function of the fried time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fossil fuels such as diesel are being gradually replaced by biodiesel, a renewable energy source, cheaper and less polluting. However, little is known about the toxic effects of this new energy source on aquatic organisms. Thus, we evaluated biochemical biomarkers related to oxidative stress in Nile tilapia (Oreochromis niloticus) after two and seven exposure days to diesel and pure biodiesel (B100) and blends B5 and B20 at concentrations of 0.01 and 0.1mLL -1. The hepatic ethoxyresorufin-O-deethylase activity was highly induced in all groups, except for those animals exposed to B100. There was an increase in lipid peroxidation in liver and gills in the group exposed to the higher concentration of B5. All treatments caused a significant increase in the levels of 1-hydroxypyrene excreted in the bile after 2 and 7d, except for those fish exposed to B100. The hepatic glutathione-S-transferase increased after 7d in animals exposed to the higher concentration of diesel and in the gill of fish exposed to the higher concentration of pure diesel and B5, but decreased for the two tested concentrations of B100. Superoxide dismutase, catalase and glutathione peroxidase also presented significant changes according to the treatments for all groups, including B100. Biodiesel B20 in the conditions tested had fewer adverse effects than diesel and B5 for the Nile tilapia, and can be suggested as a less harmful fuel in substitution to diesel. However, even B100 could activate biochemical responses in fish, at the experimental conditions tested, indicating that this fuel can also represent a risk to the aquatic biota. © 2011 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodiesel fuel is gradually replacing petroleum-based diesel oil use. Despite the biodiesel being considered friendlier to the environment, little is known about its effects in aquatic organisms. In this work we evaluated whether biodiesel exposure can affect oxidative stress parameters and biotransformation enzymes in armored catfish (Pterygoplichthys anisitsi, Loricariidae), a South American endemic species. Thus, fish were exposed for 2 and 7d to 0.01mLL-1 and 0.1mLL-1 of pure diesel, pure biodiesel (B100) and blends of diesel with 5% (B5) and 20% (B20) biodiesel. Lipid peroxidation (malondialdehyde) levels and the activities of the enzymes glutathione S-transferase, superoxide dismutase, catalase and glutathione peroxidase were measured in liver and gills. Also, DNA damage (8-oxo-7, 8-dihydro-2'-deoxyguanosine) levels in gills and 7-ethoxyresorufin-O-deethylase activity in liver were assessed. Pure diesel, B5 and B20 blends changed most of the enzymes tested and in some cases, B5 and B20 induced a higher enzyme activity than pure diesel. Antioxidant system activation in P. anisitsi was effective to counteract reactive oxygen species effects, since DNA damage and lipid peroxidation levels were maintained at basal levels after all treatments. However, fish gills exposed to B20 and B100 presented increased lipid peroxidation. Despite biodiesel being more biodegradable fuel that emits less greenhouse gases, the increased lipid peroxidation showed that biofuel and its blends also represent hazards to aquatic biota. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biodegradability of pure diesel and biodiesel and blends with different proportions of biodiesel (2% (commercial); 5% and 20%) was evaluated employing the respirometric method and the redox indicator 2,6-dichlorophenol indophenol (DCPIP) test. In the former, experiments simulating the contamination of natural environments (soil from a petrol station or water from a river) were carried out in Bartha biometer flasks (250 ml), and used to measure the microbial CO 2 production. With the DCPIP test, the capability of three inocula to biodegrade the blends was tested. Results show that although biodiesel is more easily and faster biodegraded than diesel oil, among the blends evaluated (2%, 5% and 20%), only the blend with higher concentration of biodiesel presented biodegradability significantly different from diesel and it was not verified an improvement on the biodegradation of the diesel by means of co-metabolism. © 2008 Academic Journals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work developed a methodology that uses the thermoeconomic functional diagram applied for allocating the cost of products produced by a biodiesel plant. The first part of this work discusses some definitions of exergy and thermoeconomy, with a detailed description of the biodiesel plant studied, identification of the system functions through Physical Diagram, calculation of the irreversibilities of the plant, construction of the Thermoeconomic Functional Diagram and determination of the expressions for the plant's exergetic functions. In order to calculate the exergetic increments and the physical exergy of certain flows in each step, the Chemical Engineering Simulation Software HYSYS 3.2 was used. The equipments that have the highest irreversibilities in the plant were identified after the exergy calculation. It was also found that the lowest irreversibility in the system refers to the process with a molar ratio of 6:1 and a reaction temperature of 60 °C in the transesterification process. In the second part of this work (Part II), it was calculated the thermoeconomic cost of producing biodiesel and related products, including the costs of carbon credits for the CO2 that is not released into the atmosphere, when a percentage of biodiesel is added to the petroleum diesel used by Brazil's internal diesel fleet (case study). © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biofuels and their blends with fossil fuel are important energy resources, whose production and application have been largely increased internationally. This study focuses on the evaluation of the activation energy of the thermal decomposition of three pure fuels: farnesane (renewable diesel from sugar cane), biodiesel and fossil diesel and their blends (20% farnesene and 80% of fossil diesel - 20F80D and 20% farnesane, 50% fossil diesel and 30% biodiesel - 20F50D30B). Activation energy has been determined from thermogravimetry and Model-Free Kinetics. Results showed that not only the cetane number is important to understand the behavior of the fuels regarding ignition delay, but also the profile of the activation energy versus conversion curves shows that the chemical reactions are responsible for the performance at the beginning of the process. In addition, activation energy seemed to be suitable in describing reactivity in the case of blends of renewable and fossil fuels. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to carry on a thermoeconomic analysis at a biodiesel production plant considering the irreversibilities in each step (part I: biodiesel plant under study and functional thermoeconomic diagram [1]), making it possible to calculate the thermoeconomic cost in US$/kWh and US$/l of the biodiesel production, and the main byproduct generated, glycerin, incorporating the credits for the CO2 that is not emitted into the atmosphere (carbon credits). Assuming a sale price for both the biodiesel and the byproduct (glycerin), the annual revenue of the total investment in a plant with a capacity of 8000 t/year of biodiesel operating at 8000 h/year was calculated. The variables that directly or indirectly influence the final thermoeconomic cost include total annual biodiesel production, hours of operation, manufacturing exergy cost, molar ratio in the transesterification reaction, reaction temperature and pressure in the process. Depending on the increase or decrease in sale prices for both biodiesel and glycerin, the payback is going to significantly increase or decrease. It is evident that, in exergy terms, the sale of glycerin is of vital importance in order to reduce the biodiesel price, getting a shorter payback period for the plant under study. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biofuels and their blends with fossil fuel are important energy resources, which production and application have been largely increased internationally. This study focus on the development of a correlation between apparent activation energy (Ea) and NOx emission of the thermal decomposition of three pure fuels: farnasane (renewable diesel from sugar cane), biodiesel and fossil diesel and their blends. Apparent Activation energy was determined by using thermogravimetry and Model-Free Kinetics. NOx emission was obtained from the European Stationary Cycle (ESC) with OM 926LA CONAMA P7/Euro 5 engine. Results showed that there is a linear correlation between apparent activation energy and NOx emission with R2 of 0,9667 considering pure fuels and their blends which is given as: NOx = 2,2514Ea - 96,309. The average absolute error of this correlation is 2.96% with respect to the measured NOx value. The main advantage of this correlation is its capability to predict NOx emission when either a new pure fuel or a blend of fuels is proposed to use in enginees.