22 resultados para Beet sugar industry.
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The development of new techniques that allow the analysis and optimization of energy systems bearing in mind environmental issues is indispensable in a world with finite natural resources and growing demand of energy. Among the energy systems that deserve special attention, cogeneration in the sugar industry must be pointed out, because it uses efficiently a common fuel for generation of useful heat and power. Within this frame, thermoeconomical optimization - 2nd Law of Thermodynamics analysis by exergy function and economic evaluation of the thermal system - gradually is taking importance as a powerful tool to assist to the decision making process. Also, the explicit consideration of environmental issues offers a better way to explore trade-offs between different aspects to support the decisions that must be made. In this work it is used the technique of Life Cycle Analysis (LCA) which allows to consider environmental matters as an integral part of the problem, in opposite to most of the environmental approaches that only reduce residuals generation , without taking into account impacts associated to other related processes. On the other hand, the consideration of environmental issues in optimization of energy systems is a novel and promissory contribution in the state of the art of energy optimization and LCA. The system under study is a sugar plant of Tucumán (Argentina) given the particular importance that this industry had inside the regional economy of the Argentinean Northwest. Although cogeneration comes being used a while ago in sugar industry, being the main objective the generation of heat and as secondary objective the electric power generation and mechanic power to cover several needs of working machineries, to the date it is no available a versatile tool that allows to analyze economical feasible alternatives bearing in mind environmental issues. At sugar plants, steam is generated in boilers using as fuel bagasse - cellulosic fiber waste obtained crushing the sugar cane- and it is used to give useful heat and shaft work to the plant, but it can also be used to generate electricity with export opportunities to the electrical network. The great number of process alternatives outlines a serious decision making problem in order to take advantage of the resources. Although the problem turns out to be a mixed non-linear problem (MINLP), the main contribution of this work is the development of a hybrid strategy to evaluate cogeneration alternatives that combines optimization approaches with environmental indicators. This powerful tool for its versatility and robustness to analyze cogeneration systems, will be of great help in the decision making process, because of their easy implementation to analyze the kind of problems presented in the sugar industry.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Sugarcane is the most important crop for sugar industry and raw material for bioethanol. Here we present a quantitative analysis of the gene content from publicly available sugarcane ESTs. The current sugarcane EST collection sampled orthologs for ~58 % of the closely-related sorghum proteome, suggesting that more than 10,000 sugarcane coding-genes remain undiscovered. Moreover the existence of more than 2,000 ncRNAs conserved between sugarcane and sorghum was revealed, among which over 500 are also detected in rice, supporting the existence of hundreds of conserved ncRNAs in grasses. New efforts towards sugarcane transcriptome sequencing were needed to sample the missing coding-genes as well as to expand the catalog of ncRNAs. © 2012 Springer Science+Business Media, LLC.
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
One of the biggest challenges today is to develop clean fuels, which do not emit pollutant and with viable implementation. One of the options currently under study is the hydrogen production process. In this context, this work aims to study the technical and economical aspects of the incorporation process of hydrogen producing by ethanol steam reforming in the sugar cane industry and MCFC (molten carbonate fuel cell) application on it to generate electric power. Therefore, it has been proposed a modification in the traditional process of sugar cane industry, in order to incorporate hydrogen production, besides the traditional products (sugar, ethylic, hydrated and anhydric alcohol). For this purpose, a detailed theoretical study of the ethanol production process, describing the considerations to incorporate the hydrogen production will be performed. After that, there will be a thermodynamic study for analysing the innovation of this production chain, as well as a study of economic engineering to allocate the costs of products of the new process, optimising it and considering the thermoeconomics as being as an analysis tool. This proposal aims to improve Brazil's position in the ranking of international biofuels, corroborating the nation to be a power in the hydrogen era. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work a detailed thermodynamic analysis for an extraction-condensation steam turbine capable to drive a 40 MVA electricity generator in a sugar-alcohol factory was carried out. The use of this turbine in the cogeneration system showed that its efficiency contributed to increase the power generation, although the condensation reduces the overall efficiency of the plant. Sensibility analyses were performed to evaluate the behavior of the overall energy efficiency of a plant with the extraction-condensation turbine in function of the boiler efficiency, the specific consumption of steam in the processes and the condensation rate in the turbine. It was observed that the plant efficiency is very sensible to the condensation rate variation and it increases when there is an increase in the demand of steam for processes.