200 resultados para Bayesian phylogenetic analysis

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insect pest phylogeography might be shaped both by biogeographic events and by human influence. Here, we conducted an approximate Bayesian computation (ABC) analysis to investigate the phylogeography of the New World screwworm fly, Cochliomyia hominivorax, with the aim of understanding its population history and its order and time of divergence. Our ABC analysis supports that populations spread from North to South in the Americas, in at least two different moments. The first split occurred between the North/Central American and South American populations in the end of the Last Glacial Maximum (15,300-19,000 YBP). The second split occurred between the North and South Amazonian populations in the transition between the Pleistocene and the Holocene eras (9,100-11,000 YBP). The species also experienced population expansion. Phylogenetic analysis likewise suggests this north to south colonization and Maxent models suggest an increase in the number of suitable areas in South America from the past to present. We found that the phylogeographic patterns observed in C. hominivorax cannot be explained only by climatic oscillations and can be connected to host population histories. Interestingly we found these patterns are very coincident with general patterns of ancient human movements in the Americas, suggesting that humans might have played a crucial role in shaping the distribution and population structure of this insect pest. This work presents the first hypothesis test regarding the processes that shaped the current phylogeographic structure of C. hominivorax and represents an alternate perspective on investigating the problem of insect pests. © 2013 Fresia et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Snake venom metalloproteases (SVMPs) embody zinc-dependent multidomain enzymes responsible for a relevant pathophysiology in envenomation. including local and systemic hemorrhage. The molecular features responsible for hemorrhagic potency of SVMPs have been associated with their multidomains structures which can target these proteins them to several receptors of different tissues and cellular types. BjussuMP-I. a SVMP isolated from the Bothrops jararacussu venom, has been characterized as a P-III hemorrhagic metalloprotease. The complete cDNA sequence of BjussuMP-I with 1641bp encodes open reading frames of 547 amino acid residues, which conserve the common domains of P-III high molecular weight hemorrhagic metalloproteases: (i) pre-pro-peptide, (ii) metalloprotease, (iii) disintegrin-like and (iv) rich cysteine domain. BjussuMP-I induced lyses in fibrin clots and inhibited collagen- and ADP-induced platelet aggregation. We are reporting, for the first time, the primary structure of an RGD-P-III class snake venom metalloprotease. A phylogenetic analysis of the BjussuMP-1 metalloprotease/catalytic domain was performed to get new insights into the molecular evolution of the metalloproteases. A theoretical molecular model of this domain was built through folding recognition (threading) techniques and refined by molecular dynamics simulation. Then, the final BjussuMP-I catalytic domain model was compared to other SVMPs and Reprolysin family proteins in order to identify eventual structural differences, which could help to understand the biochemical activities of these enzymes. The presence of large hydrophobic areas and some conserved surface charge-positive residues were identified as important features of the SVMPs and other metalloproteases. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All larval stages and the first crab instar of Paradasygyius depressus (Bell) were obtained in laboratory culture. Larval development consists of two zoeal stages, followed by the megalopa. Each larval stage is described in detail. Beginning with the first zoea, the duration of each stage was 4--7 (4.5 +/- 0.7), 4-5 (4.5 +/- 0.5), and 7 days, the megalopa and first crab instar appearing 11 +/- 1 and 15 days after hatching, respectively. A phylogenetic analysis of 21 genera of Majidae is provided based on 34 zoeal and three megalopal characters. The phylogenetic analysis resulted in four equally parsimonious trees 173 steps long (CI = 0.66, RI = 0.71, and RC = 0.47) supporting the monophyly of Oregoniinae, Majinae, and Inachinae (with the exclusion of Macrocheira de Haan incertae sedis). Based on general agreement of sister-group hypotheses, we provide sets of larval characters that define Oregoniinae, Majinae, and Inachinae. Our phylogenetic hypothesis suggests that Oregoniinae is the most basal clade within the Majidae, and Majinae and the clade (Epialtus H. Milne Edwards + Inachinae [excluding Macrocheira incertae sedis]) are sister taxa. Within Inachinae, all trees suggest that Inachus Weber and Macropodia Leach are sister taxa nested as the most derived clade, followed by Achaeus Leach, Pyromaia Stimpson, Paradasygyius Garth, Anasimus A. Milne-Edwards, and the most basal Stenorhynchus Lamarck. The sister-group relationships of the clade (Pisa Leach (Taliepus A. Milne-Edwards + Libinia Leach)), Mithrax Latreille and Microphrys H. Milne Edwards remained unresolved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic and phylogenetic analyses of the region containing the glycoprotein (G) gene, which is related to pathogenicity and antigenicity, and the G-L intergenic region were carried out in 14 Brazilian rabies virus isolates. The isolates were classified as dog-related rabies virus (DRRV) or vampire bat-related rabies virus (VRRV), by nucleoprotein (N) analysis. The nucleotide and amino acid (AA) homologies of the area containing the G protein gene and G-L intergenic region were generally lower than those of the ectodomain. In both regions, nucleotide and deduced AA homologies were lower among VRRVs than among DRRVs. There were AA differences between DRRV and VRRV at 3 antigenic sites and epitopes (IIa, WB+ and III), suggesting that DRRV and VRRV can be distinguished by differences of antigenicity. In a comparison of phylogenetic trees between the ectodomain and the area containing the G protein gene and G-L intergenic region, the branching patterns of the chiropteran and carnivoran rabies virus groups differed, whereas there were clear similarities in patterns within the DRRV and VRRV groups. Additionally, the VRRV isolates were more closely related to chiropteran strains isolated from Latin America than to Brazilian DRRV. These results indicate that Brazilian rabies virus isolates can be classified as DRRV or VRRV by analysis of the G gene and the G-L intergenic region, as well as by N gene analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The male genitalia of Pseudopolybia vespiceps are described and compared to congeners. Characters of the male genitalia are combined with morphological characters of the females and nests and used in a phylogenetic analysis. The single cladogram resulting supports monophyly of the genus Pseudopolybia and interrelationships among the species as: P. langi + (P. difficilis + (P. compressa + P. vespiceps)). A new, illustrated identification key is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article introduces the software program called EthoSeq, which is designed to extract probabilistic behavioral sequences (tree-generated sequences, or TGSs) from observational data and to prepare a TGS-species matrix for phylogenetic analysis. The program uses Graph Theory algorithms to automatically detect behavioral patterns within the observational sessions. It includes filtering tools to adjust the search procedure to user-specified statistical needs. Preliminary analyses of data sets, such as grooming sequences in birds and foraging tactics in spiders, uncover a large number of TGSs which together yield single phylogenetic trees. An example of the use of the program is our analysis of felid grooming sequences, in which we have obtained 1,386 felid grooming TGSs for seven species, resulting in a single phylogeny. These results show that behavior is definitely useful in phylogenetic analysis. EthoSeq simplifies and automates such analyses, uncovers much of the hidden patterns of long behavioral sequences, and prepares this data for further analysis with standard phylogenetic programs. We hope it will encourage many empirical studies on the evolution of behavior.