10 resultados para Bayesian adaptive design

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Fortran computer program is given for the computation of the adjusted average time to signal, or AATS, for adaptive (X) over bar charts with one, two, or all three design parameters variable: the sample size, n, the sampling interval, h, and the factor k used in determining the width of the action limits. The program calculates the threshold limit to switch the adaptive design parameters and also provides the in-control average time to signal, or ATS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Fortran computer program is given for the computation of the adjusted average time to signal, or AATS, for adaptive X̄ charts with one, two, or all three design parameters variable: the sample size, n, the sampling interval, h, and the factor k used in determining the width of the action limits. The program calculates the threshold limit to switch the adaptive design parameters and also provides the in-control average time to signal, or ATS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An economic-statistical model is developed for variable parameters (VP) (X) over bar charts in which all design parameters vary adaptively, that is, each of the design parameters (sample size, sampling interval and control-limit width) vary as a function of the most recent process information. The cost function due to controlling the process quality through a VP (X) over bar chart is derived. During the optimization of the cost function, constraints are imposed on the expected times to signal when the process is in and out of control. In this way, required statistical properties can be assured. Through a numerical example, the proposed economic-statistical design approach for VP (X) over bar charts is compared to the economic design for VP (X) over bar charts and to the economic-statistical and economic designs for fixed parameters (FP) (X) over bar charts in terms of the operating cost and the expected times to signal. From this example, it is possible to assess the benefits provided by the proposed model. Varying some input parameters, their effect on the optimal cost and on the optimal values of the design parameters was analysed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have shown that adaptive X control charts are quicker than traditional X charts in detecting small to moderate shifts in a process. In this article, we propose a joint statistical design of adaptive X and R charts having all design parameters varying adaptively. The process is subjected to two independent assignable causes. One cause changes the process mean and the other changes the process variance. However, the occurrence of one kind of assignable cause does not preclude the occurrence of the other. It is assumed that the quality characteristic is normally distributed and the time that the process remains in control has exponential distribution. Performance measures of these adaptive control charts are obtained through a Markov chain approach. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop an economic model for X̄ control charts having all design parameters varying in an adaptive way, that is, in real time considering current sample information. In the proposed model, each of the design parameters can assume two values as a function of the most recent process information. The cost function is derived and it provides a device for optimal selection of the design parameters. Through a numerical example one can foresee the savings that the developed model possibly provides. © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a general model for adaptive c, np, u and p control charts in which one, two or three design parameters (sample size, sampling interval and control limit width) switch between two values, according to the most recent process information. For a given in-control average sampling rate and a given false alarm rate, the adaptive chart detects changes in the process much faster than a chart with fixed parameters. Moreover, this study also offers general guidance on how to choose an effective design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, a generalized passivity concept for linear multivariable systems was obtained which allows circumventing the restrictiveness of the usual passivity concept. The latter is associated with the classical SPR (Strictly Positive Real) condition whereas the new concept of passivity is associated with the so called WSPR condition and its advantage in multivariable systems is that it does not require a restrictive symmetry condition of SPR systems. As a result, it allows the design of multivariable adaptive control that, unlike some existing factorization approaches, does not imply in additional overparameterization of the adaptive controller. In this paper, we complete a previously established WSPR sufficient condition and prove that it is also necessary. We also propose some methods of passification by either premultiplying the system output tracking error vector or the system input vector by an adequate passifying matrix multiplier, so that the resulting input/output transfer function becomes WSPR. The efficiency of our proposals are illustrated by simulation utilizing a well known robotics adaptive visual servoing problem. © 2011 IFAC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research has shown that applying the T-2 control chart by using a variable parameters (VP) scheme yields rapid detection of out-of-control states. In this paper, the problem of economic statistical design of the VP T-2 control chart is considered as a double-objective minimization problem with the statistical objective being the adjusted average time to signal and the economic objective being expected cost per hour. We then find the Pareto-optimal designs in which the two objectives are met simultaneously by using a multi-objective genetic algorithm. Through an illustrative example, we show that relatively large benefits can be achieved by applying the VP scheme when compared with usual schemes, and in addition, the multi-objective approach provides the user with designs that are flexible and adaptive.