104 resultados para Ballasts (lamp)
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This paper presents an improved design methodology for determining the parameters used in the classical Series-Parallel Loaded Resonant (SPLR) filter employed in the switching frequency controlled dimmable electronic ballasts. According to the analysis developed in this paper, it is possible to evaluate some characteristics of the resonant filter during the dimming process, such as: range of switching frequency, phase shift and rms value of the current drained by the resonant filter + fluorescent lamp set.
Resumo:
This paper presents an improved design methodology for the determination of the parameters used in the classical series-resonant parallel-loaded (SRPL) filter employed in the switching frequency controlled dimmable electronic ballasts. According to the analysis developed in this paper, it is possible to evaluate some important characteristics of the resonant filter during the dimming operation, such as: range of switching frequency, phase shift, and rms value of the current drained by the resonant filter + fluorescent lamp set. Experimental results are presented in order to validate the analyses developed in this paper. © 2005 IEEE.
Resumo:
This paper presents a new model for the representation of the electrodes filaments of fluorescent lamps, during their preheating, and an analysis capable to guide the design of the preheating process in electronic ballasts. The main improvement obtained with the lamp model is the accurate theoretical reproduction of the behavior of the Rh/Rc ratio during the preheating process. In addition, using the proposed methodology based on the lamp model, it is possible to set a proper preheating process to the electrodes filaments, without the necessity of exhaustive empirical adjustments in the prototype, reducing time and costs involved in the design of ballasts with preheating capabilities. © 2006 IEEE.
Resumo:
This paper presents a novel isolated electronic ballast for multiple fluorescent lamps, featuring high power-factor, and high efficiency. Two stages compose this new electronic ballast, namely, a new voltage step-down isolated Sepic rectifier, and a classical resonant Half-Bridge inverter. The new isolated Sepic rectifier is obtained from a Zero-Current-Switching (ZCS) Pulse-Width-Modulated (PWM) soft-commutation cell. The average-current control technique is used in this preregulator stage in order to provide low phase displacement and low Total-Harmonic-Distortion (THD) at input current, resulting in high power-factor, and attending properly IEC 61000-3-2 standards. The resonant Half-Bridge inverter performs Zero-Voltage-Switching (ZVS), providing conditions for the obtaining of overall high efficiency. It is developed a design example for the new isolated electronic ballast rated at 200W output power, 220Vrms input voltage, 115Vdc dc link voltage, with rectifier and inverter stages operating at 50kHz. Finally, experimental results are presented in order to verify the developed analysis. The THD at input current is equal to 5.25%, for an input voltage THD equal to 1.63%, and the measured overall efficiency is about 88.25%, at rated load.
Resumo:
This paper presents a high efficiency Sepic rectifier for an electronic ballast application with multiple fluorescent lamps. The proposed Sepic rectifier is based on a Zero-Current-Switching (ZCS) Pulse-Width-Modulated (PWM) soft-commutation cell. The high power-factor of this structure is obtained using the instantaneous average-current control technique, in order to attend properly IEC61000-3-2 standards. The inverting stage of this new electronic ballast is a classical Zero-Voltage-Switching (ZVS) Half-Bridge inverter. A proper design methodology is developed for this new electronic ballast, and a design example is presented for an application with five fluorescent lamps 40W-T12 (200W output power), 220Vrms input voltage, 130Vdc dc link voltage, with rectifier and inverter stages operating at 50kHz. Experimental results are also presented. The THD at input current is equal to 6.41%, for an input voltage THD equal to 2.14%, and the measured overall efficiency is about 92.8%, at rated load.
Resumo:
This paper presents an investigation concerning the use of fundamental approximation analysis and a new lamp model for the prediction of the voltage over electrodes' filaments during dimming operation. The lamp model employed in this paper is based on equivalent resistances, which represent the electrodes' filaments and the gas column of a F32T8 lamp. Experimental results are presented in this paper, indicating the validity of the proposed analysis and confirming its potential to serve as an effective tool for the design of dimming electronic ballasts. © 2005 IEEE.
Resumo:
This paper presents a new methodology for the adjustment of the preheating process and steady-state operation of electronic ballasts intended for hot-cathode fluorescent lamps. The classical series-resonant parallel-loaded half-bridge inverter is the power stage analyzed in this paper. In addition, the preheating process is based on the imposition of a constant rms current through the electrodes, in order to provide a proper value of the R-h/R-c ratio before the lamp start. According to the proposed methodology, it is possible to set suitable operating points for, the electronic ballast, considering optimal conditions for the lamps electrodes. Therefore, the proposed methodology for setting the preheating and steady-state operation is a complete platform to the design of electronic ballasts for hot-cathode fluorescent lamps.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work has as objective to develop an interesting research line in the Optical Instrumentation area, that is to associate the Optical Design to the Ophthalmology area. The purpose of it is handling the optical design techniques to design a widely used ophthalmologic instrument called slit lamp. The optical and mechanical design of the slit lamp prototype was carefully projected in order to improve the best quality image, the comfort of the patient and the user, the simplicity of handling, the facility of production the availability of optical and mechanical components in the national market and the low cost of production. The main goal of this work was to realize a project using totally national technology, cheapening the cost and forming the optimum image required for the slit lamp optical system.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An electronic ballast for multiple tubular fluorescent lamp systems is presented. The proposed structure has a high value for the power factor, a dimming capability, and soft switching of the semiconductor devices operated at high frequencies. A zero-current switching pulse width modulated SEPIC converter is used as the rectifying stage and it is controlled using the instantaneous average input current technique. The inverting stage consists of classical resonant half-bridge converter with series-resonant parallel-loaded filters. The dimming control technique is based on varying the switching frequency and monitoring the phase shift of the current drained by the filters and lamps in order to establish a closed loop control. Experimental results are presented that validate the theoretical analysis.
Resumo:
This paper presents a new model for the representation of electrodes' filaments of hot-cathode fluorescent lamps, during preheating processes based on the injection of currents with constant root mean square (rms) values. The main improvement obtained with this model is the prediction of the R-h/R-c ratio during the preheating process, as a function of the preheating time and of the rms current injected in the electrodes. Using the proposed model, it is possible to obtain an estimate of the time interval and the current that should be provided by the electronic ballast, in order to ensure a suitable preheating process. is estimate of time and current can be used as input data in the design of electronic ballasts with programmed lamp start, permitting the prediction of the R-h/R-c ratio during the initial steps of the design (theoretical analysis and digital simulation). Therefore, the use of the proposed model permits to reduce the necessity of several empirical adjustments in the prototype, in order to set the operation of electronic ballasts during the preheating process. This fact reduces time and costs associated to the global design procedure of electronic ballasts.
Fluorescent lamp model based on equivalent resistances, considering the effects of dimming operation
Resumo:
This paper presents a new methodology for the determination of fluorescent lamp models based on equivalent resistances. One important feature of the proposed methodology is concerned with the inclusion of the filaments into the model, considering the effects of dimming operation on the equivalent resistances. The classical Series-Resonant Parallel-Loaded Half-Bridge inverter is used as the power stage of the ballast. Moreover, the variation of the inverter's switching frequency is the dimming technique assumed for the analyses. Results obtained with a F32T8 lamp indicate that the accuracy of the model is very satisfactory. Thus, the lamp models obtained with the proposed methodology have the potential to serve as an important tool for ballast designers, considering the necessity for evaluating the lamp/ballast compatibility, according to issues concerned to the operating conditions of the electrodes' filaments.
Resumo:
An electronic ballast for multiple tubular fluorescent lamps is presented in this paper. The proposed structure features high power-factor, dimming capability, and soft-switching to the semiconductor devices operated in high frequencies. A Zero-Current-Switching - Pulse-Width-Modulated (ZCS-PWM) SEPIC converter composes the rectifying stage, controlled by the instantaneous average input current technique, performing soft-commutations and high input power factor. Regarding the inverting stage, it is composed by a classical resonant Half-Bridge converter, associated to Series Parallel-Loaded Resonant (SPLR) filters. The dimming control technique employed in this Half-Bridge inverter is based on the phase-shift in the current processed through the sets of filter + lamp. In addition, experimental results are shown in order to validate the developed analysis.