15 resultados para Balance systems
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The use of crop rotation and manure application can provide sustainability for an agricultural production system by improving soil quality and increasing nutrient use efficiency. This study aimed to evaluate the effect of mineral, organic and mineral+organic fertilization on grain yield and on soil phosphorus and potassium balance, in two crop systems under no-till, with and without rotation of cover crops. The experiment was carried out from 2006 to 2008 on a clayey Rhodic Hapludox in Marechal Candido Rondon, Parana State, Brazil. The cropping sequence in the rotation system involving cover crops was black oat + hairy vetch + forage turnip/corn/pigeon pea/wheat/mucuna + brachiaria + sunn hemp, and in the succession system was wheat/corn/wheat/soybean. Organic and mineral+organic fertilizations consisted of the application of solely manure and manure combined with mineral fertilizer, respectively. Soil P and K balances were calculated after the second year of the experiment, up to a depth of 0.40 m. First year corn yields were higher in the crop succession system accompanied by mineral fertilization. In the second year, wheat and soybean yield did not vary between crop systems and nutrient sources, demonstrating the residual effect of crop rotation and manure use. Crop rotation with cover crops resulted in an increase in soil K levels by promoting the recycling of this nutrient in the soil. In both crop systems, the application of mineral and organic fertilizers - either in isolation or in combination - resulted in a negative soil P and K balance in the short term. This represents a threat to the sustainability of the agricultural production system in the long term, due to the depletion of soil nutrient reserves.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper proposes a new approach and coding scheme for solving economic dispatch problems (ED) in power systems through an effortless hybrid method (EHM). This novel coding scheme can effectively prevent futile searching and also prevents obtaining infeasible solutions through the application of stochastic search methods, consequently dramatically improves search efficiency and solution quality. The dominant constraint of an economic dispatch problem is power balance. The operational constraints, such as generation limitations, ramp rate limits, prohibited operating zones (POZ), network loss are considered for practical operation. Firstly, in the EHM procedure, the output of generator is obtained with a lambda iteration method and without considering POZ and later in a genetic based algorithm this constraint is satisfied. To demonstrate its efficiency, feasibility and fastness, the EHM algorithm was applied to solve constrained ED problems of power systems with 6 and 15 units. The simulation results obtained from the EHM were compared to those achieved from previous literature in terms of solution quality and computational efficiency. Results reveal that the superiority of this method in both aspects of financial and CPU time. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This work presents a mathematical model for helping mills choose sugarcane varieties for planting. It maximizes crop residual biomass energy balance by considering the difference between generated and consumed energy in the process of transferring this biomass from the field to the processing center; it takes into account enterprise demand restrictions and cane planting area. For this full zero-one linear programming techniques were proposed. The model is viable for choosing sugarcane varieties that would benefit sugarcane production and industrial systems, by reducing crop residue and increasing final energy production. (c) 2006 Published by Elsevier Ltd.
Resumo:
At this time, each major automotive market bares its own standards and test procedures to regulate the vehicle green house gases emissions and, thus, fuel consumption. Hence, much are the ways to evaluate the overall efficiency of motor vehicles. The majority of such standards rely on dynamometer cycle tests that appraise only the vehicle as a whole, but fail to assess emissions for each component or sub-system. Once the amount of work generated by the power source of an ICE vehicle to overcome the driving resistance forces is proportional to the energy contained in the required amount of fuel, the power path of the vehicle can be straightforwardly modeled as a set of mechanical systems, and each sub-system evaluated for its share on the total fuel consumption and green house gases emission. This procedure enables the estimation of efficiency gains on the system due to improvement of particular elements on the vehicle's driveline. In this work a simple systematic mechanical model of an arbitrary smallsized hatch back was assembled and total required energy calculated for different regulatory cycles. All the modeling details of the energy balance throughout the system are presented. Afterward, each subsystem was investigated for its role on the fuel consumption and the generated emission quantified. Furthermore, the application of the modeling technique for different sets of sub-systems was introduced. Copyright © 2011 SAE International.
Resumo:
In this paper the dynamics of the ideal and non-ideal Duffing oscillator with chaotic behavior is considered. In order to suppress the chaotic behavior and to control the system, a control signal is introduced in the system dynamics. The control strategy involves the application of two control signals, a nonlinear feedforward control to maintain the controlled system in a periodic orbit, obtained by the harmonic balance method, and a state feedback control, obtained by the state dependent Riccati equation, to bring the system trajectory into the desired periodic orbit. Additionally, the control strategy includes an active magnetorheological damper to actuate on the system. The control force of the damper is a function of the electric current applied in the coil of the damper, that is based on the force given by the controller and on the velocity of the damper piston displacement. Numerical simulations demonstrate the effectiveness of the control strategy in leading the system from any initial condition to a desired orbit, and considering the mathematical model of the damper (MR), it was possible to control the force of the shock absorber (MR), by controlling the applied electric current in the coils of the damper. © 2012 Foundation for Scientific Research and Technological Innovation.
Operational safety: Development of electronic system for dynamic balance evaluation of farm tractors
Resumo:
The present study aimed at the development and evaluation of a low cost electronic device in order to provide safety for farm tractor users. The major accident occurrence in agricultural surroundings is from farm tractor side bending. Therefore, this sensor was designed to detect and alert about it. The results were satisfying. © 2013 Taylor & Francis Group.
Resumo:
Nutrient use efficiency has become an important issue in agriculture, and crop rotations with deep vigorous rooted cover crops under no till may be an important tool in increasing nutrient conservation in agricultural systems. Ruzigrass (Brachiaria ruziziensis) has a vigorous, deep root system and may be effective in cycling P and K. The balance of P and K in cropping systems with crop rotations using ruzigrass, pearl millet (Pennisetum glaucum) and ruzigrass + castor bean (Ricinus communis), chiseled or not, was calculated down to 0.60 m in the soil profile for 2 years. The cash crops were corn in the first year and soybean in the second year. Crop rotations under no-till increased available P amounts in the soil-plant system from 80 to 100 %, and reduced K losses between 4 and 23 %. The benefits in nutrient balance promoted by crop rotations were higher in the second year and under without chiseling. Plant residues deposited on the soil surface in no-till systems contain considerable nutrient reserve and increase fertilizer use efficiency. However, P release from ruzigrass grown as a sole crop is not synchronized with soybean uptake rate, which may result in decreased yields. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
The length of the post-partum anoestrous interval affects reproductive efficiency in many tropical beef cattle herds. In this study, results from genome-wide association studies (Experiment 1: GWAS) and gene expression (Experiment 2: microarray) were combined in a systems approach to reveal genetic markers, genes and pathways underlying the physiology of post-partum anoestrus in tropically adapted cattle. The microarray study measured the expression of 13,964 genes in the hypothalamus of Brahman cows. A total of 366 genes were differentially expressed (DE) in the post-partum period, when acyclic cows were compared to cows that had resumed ovarian cycles. Associated markers (P < 0.05) from a high density GWAS pointed to 2829 genes that were associated with post-partum anoestrous interval (PPAI) in two populations of beef cattle: Brahman and Tropical composite. Together the experiments provided evidence for 63 genes that are likely to influence the resumption of ovulation post-partum in tropically adapted beef cattle. Functional annotation analysis revealed that some of the 63 genes have known roles in hormonal activity, energy balance and neuronal synapse plasticity. Polymorphisms within candidate genes identified by this systems approach could have biological significance in post-partum anoestrus and help select Zebu (Bos indicus) influenced cattle with genetic potential for shorter post-partum anoestrus. Crown Copyright (C) 2014 Published by Elsevier B.V. All rights reserved.
Resumo:
Nickel-titanium rotatory systems should remove dentin during the root canal preparation to promote the enlargement and tapered shape with continuously narrowing towards the apex. Objective: The aim of this study was to analyze the cutting ability of three NiTi rotatory systems (n = 12): ProTaper (group 1), Mtwo (group 2), and K3 (group 3). Material and methods: Thirty six maxillary molar teeth were weighted on an analytical balance before and after the rotatory preparation of the mesio-buccal root canal. Data was statistically analyzed by ANOVA and Tukey s test with a significance level of 5%. Results: The results revealed the following mass differences (g) before and after the root canal preparation: ProTaper (group 1 – 0.0159 ± 0.004), Mtwo (group 2 – 0.0125 ± 0.002), and K3 (group 3 – 0.007 ± 0.003). Conclusion: ProTaper showed the highest cutting ability among the three tested nickel-titanium rotatory systems followed by Mtwo and K3.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)