4 resultados para Backlogging
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The present paper proposes a new hybrid multi-population genetic algorithm (HMPGA) as an approach to solve the multi-level capacitated lot sizing problem with backlogging. This method combines a multi-population based metaheuristic using fix-and-optimize heuristic and mathematical programming techniques. A total of four test sets from the MULTILSB (Multi-Item Lot-Sizing with Backlogging) library are solved and the results are compared with those reached by two other methods recently published. The results have shown that HMPGA had a better performance for most of the test sets solved, specially when longer computing time is given. © 2012 Elsevier Ltd.
Resumo:
The present paper solves the multi-level capacitated lot sizing problem with backlogging (MLCLSPB) combining a genetic algorithm with the solution of mixed-integer programming models and the improvement heuristic fix and optimize. This approach is evaluated over sets of benchmark instances and compared to methods from literature. Computational results indicate competitive results applying the proposed method when compared with other literature approaches. © 2013 IEEE.
Resumo:
Neste trabalho estuda-se um problema de dimensionamento de lotes e distribuição que envolve além de custos de estoques, produção e preparação, custos de transportes para o armazém da empresa. Os custos logísticos estão associados aos contêineres necessários para empacotar os produtos produzidos. A empresa negocia um contrato de longo prazo onde um custo fixo por período é associado ao transporte dos itens, em contrapartida um limite de contêineres é disponibilizado com custo mais baixo que o custo padrão. Caso ocorra um aumento ocasional de demanda, novos contêineres podem ser utilizados, no entanto, seu custo é mais elevado. Um modelo matemático foi proposto na literatura e resolvido utilizando uma heurística Lagrangiana. No presente trabalho a resolução do problema por uma heurística Lagrangiana/surrogate é avaliada. Além disso, é considerada uma extensão do modelo da literatura adicionando restrições de capacidade e permitindo atraso no atendimento a demanda. Testes computacionais mostraram que a heurística Lagrangiana/surrogate é competitiva especialmente quando se têm restrições de capacidade apertada.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)