155 resultados para Bacillus licheniformis
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Cyclodextrin glycosyltransferase (EC 2.4.1.19) is an enzyme that produces cyclodextrins from starch via an intramolecular transglycosylation reaction. An alkalophilic Bacillus strain, isolated from cassava peels, was identified as Bacillus licheniformis. CGTase production by this strain was better when potato starch was used as carbon source, followed by cassava starch and amylopectin. Glucose and amylose, on the other hand, acted as synthesis repressors. When the cultivation was supplemented with sodium ions and had the pH adjusted between 6.0 and 9.0, the microorganism maintained the growth and enzyme production capacity. This data is interesting because it contradicts the concept that alkalophilic microorganisms do not grow in this pH range. After ultrafiltration-centrifugation, one protein of 85.2 kDa with CGTase activity was isolated. This protein was identified in plates with starch and phenolphthalein. Determination of the optimum temperature showed higher activities at 25 degrees C and 55 degrees C, indicating the possible presence of more than one CGTase in the culture filtrate. Km and Vmax values were 1.77 mg/mL and 0.0263 U/mg protein, respectively, using potato starch as substrate.
Resumo:
The alkalophilic bacteria Bacillus licheniformis 77-2 produces significant quantities of thermostable cellulase-free xylanases. The crude xylanase was purified to apparent homogeneity by gel filtration (G-75) and ionic exchange chromatography (carboxymethyl sephadex, Q sepharose, and Mono Q), resulting in the isolation of two xylanases. The molecular masses of the enzymes were estimated to be 17 kDa (X-I) and 40 kDa (X-II), as determined by SDS-PAGE. The K(m) and V(max) values were 1.8 mg/mL and 7.05 U/mg protein (X-I), and 1.05 mg/mL and 9.1 U/mg protein (X-II). The xylanases demonstrated optimum activity at pH 7.0 and 8.0-10.0 for xylanase X-I and X-II, respectively, and, retained more than 75% of hydrolytic activity up to pH 11.0. The purified enzymes were most active at 70 and 75 degrees C for X-I and X-II, respectively, and, retained more than 90% of hydrolytic activity after 1 h of heating at 50 degrees C and 60 degrees C for X-I and X-II, respectively. The predominant products of xylan hydrolysates indicated that these enzymes were endoxylanases.
Resumo:
Alkalophilic Bacillus licheniformis 77-2 produced an extracellular alkali-tolerant xylanase with negligible cellulase activity in medium containing corn straw. The effectiveness of crude xylanase on treatment of eucalyptus Kraft pulp was evaluated. A biobleaching experiment was carried out to compare the chlorine saving with pulp treated and untreated by the enzyme. Two-stage bleaching was employed, using a ClO2 chlorination and NaOH extraction (DE sequence). With the enzymatic treatment, in order to obtain the same value of Kappa number and brightness, respectively 28.5 and 30% less ClO2 was required in comparison to the enzymatically untreated samples.
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Effects of amylase addition on extruder parameters, cost of extrusion, kibble quality and digestibility of dog food were measured in two separate experiments. In experiment 1, 120 kilo-novo-alpha-amilase-unit (KNU)/kg of heat stable alpha-amylase produced by Bacillus licheniformis was added in liquid form during a preconditioning period. In experiment 23684 KNU/kg of heat stable alpha-amylase produced by Aspergillus oryzae was mixed with the ingredients before extrusion. The diets were processed in a single screw extruder and submitted to digestibility and on experiment 1 also to palatability tests. Digestibility was tested using 12 dogs, six per diet. Data were submitted to analysis of variance followed by F-test. Amylase addition altered extrusion parameters in both experiments (P<0.05), with higher output (kg of dry matter [DM]/h: 28% and 43% higher in experiments 1 and 2) and less electric energy consumption (kW to produce 100 kg DM: 22% and 29% lower in experiments 1 and 2). Kibble appearance and quality [density (g/L), cutting force (g), and starch gelatinization degree (%)] did not change with enzyme treatment (P>0.05). Likewise, enzyme addition did not change nutrient digestibility, fecal dry matter or food palatability (P<0.05). Taken together our results suggest that amylase promoted the breakdown of amylose chains, thereby reducing the dough viscosity and resistance inside the extruder which allowed for higher product flow and less electricity energy consumption without altering food quality. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The consumer market demands food without pesticide residues. Therefore, this study focused on evaluating the control of green mold in Pera orange trees with biocontrol agents (Bacillus subtilis, Bacillus licheniformis and Bacillus subtilis (QST 713)), associated or not with heat treatment. The fruit was obtained in packinghouse before processing, being washed and disinfected with the use of Sodium Hypochlorite. Fruits submitted to these treatments were stored from 11 to 28 days at temperature of 10 °C and RH 90%±5 or for eight days at 20 °C and 90%±5. In general, the heat treatment reduced the disease severity determine by the area under the disease progress curve in the fruit and the incidence of natural postharvest disease in Pera oranges. On the other hand, biocontrol agents did not control the disease, showing that the organisms tested did not present curative activity against the green mold.
Resumo:
Pós-graduação em Zootecnia - FMVZ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Little is known about genetic exchanges in natural populations of bacteria of the spore-forming Bacillus cereus group, because no population genetics studies have been performed with local sympatric populations. We isolated strains of Bacillus thuringiensis and B. cereus from small samples of soil collected at the same time from two separate geographical sites, one within the forest and the other at the edge of the forest. A total of 100 B. cercus and 98 B. thuringiensis strains were isolated and characterized by electrophoresis to determine allelic composition at nine enzymatic loci. We observed genetic differentiation between populations of B. cereus and B. thuringiensis. Populations of a given Bacillus species-B. thuringiensis or B. cereus-were genetically more similar to each other than to populations of the other Bacillus species. Hemolytic activity provided further evidence of this genetic divergence, which remained evident even if putative clones were removed from the data set. Our results suggest that the rate of gene flow was higher between strains of the same species, but that exchanges between B. cereus and B. thuringiensis were nonetheless possible. Linkage disequilibrium analysis revealed sufficient recombination for B. cereus populations to be considered panmictic units. In B. thuringiensis, the balance between clonal proliferation and recombination seemed to depend on location. Overall, our data indicate that it is not important for risk assessment purposes to determine whether B. cereus and B. thuringiensis belong to a single or two species. Assessment of the biosafety of pest control based on B. thuringiensis requires evaluation of the extent of genetic exchange between strains in realistic natural conditions.
Resumo:
O objetivo deste trabalho foi identificar e caracterizar os genes cry3, vip1, vip2 e vip1/vip2 em uma coleção de 1.078 isolados de Bacillus thuringiensis potencialmente tóxicos para larvas de coleópteros. Foram utilizados pares de oligonucleotídeos iniciadores gerais obtidos a partir de regiões conservadas dos genes e do alinhamento de sequências consenso. Posteriormente, os isolados positivos foram caracterizados por meio da técnica de PCR‑RFLP, tendo-se utilizado enzimas de restrição específicas, para identificar novas subclasses de genes nos isolados. Cento e cinquenta e um isolados foram positivos para os genes avaliados, com maior frequência para o gene vip1/vip2 (139 isolados). Pela técnica de PCR‑RFLP, foram observados 14 perfis polimórficos, o que indica a presença de diferentes alelos e, consequentemente, de distintas subclasses desses genes.
Resumo:
A bactéria Bacillus thuringiensis Berliner produz um corpo de inclusão paraesporal (cristal) de natureza proteica, formado durante a esporulação, que atua de forma eficiente no controle de insetos-praga de culturas economicamente importantes. Esse cristal é constituído de proteínas Cry, que são codificadas pelos genes cry; um isolado pode ser caracterizado pelo conteúdo de genes cry que apresenta. Visando caracterizar novos isolados no combate de insetos-praga pertencentes às ordens Lepidoptera e Coleoptera, 76 isolados bacterianos foram analisados molecularmente e tiveram seu potencial de controle avaliado por meio de bioensaios com larvas de Spodoptera frugiperda (J.E. Smith), Sphenophorus levis Vaurie e Tenebrio molitor Linnaeus. As análises moleculares indicaram 11 isolados (14,5% da coleção), contendo genes lepidóptero-específicos e 17 (22,37%) com genes coleóptero-específicos. As análises de patogenicidade revelaram dois isolados com alto potencial de controle para lagartas de S. frugiperda, um para larvas de S. levis e seis prejudiciais ao desenvolvimento das larvas de T. molitor. Esses isolados de B. thuringiensis podem ser promissores no controle biológico das referidas pragas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)