120 resultados para BLACK HOLES
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The hybrid formalism is used to quantize the superstring compactified to two-dimensional target-space in a manifestly spacetime supersymmetric manner. A quantizable sigma model action is then constructed for the type II superstring in curved two-dimensional supergravity backgrounds which can include Ramond-Ramond flux. Such curved backgrounds include Calabi-Yau fourfold compactifications with Ramond-Ramond flux, and new extremal black hole solutions in two-dimensional dilaton supergravity theory. These black hole solutions are a natural generalization of the CGHS model and might be possible to describe using a supergroup version of the SL(2, R)/U(1) WZW model. We also study some dynamical aspects of the new black holes, such as formation and evaporation. (C) 2001 Published by Elsevier B.V. B.V.
Resumo:
We solve Einstein equations on the brane to derive the exact form of the brane-world-corrected perturbations in Kerr-Newman singularities, using Randall-Sundrum and Arkani-Hamed-Dimopoulos-Dvali (ADD) models. It is a consequence of such models that Kerr-Newman mini-black holes can be produced in LHC. We use this approach to derive a normalized correction for the Schwarzschild Myers-Perry radius of a static (4+n)-dimensional mini-black hole, using more realistic approaches arising from Kerr-Newman mini-black hole analysis. Besides, we prove that there are four Kerr-Newman black hole horizons in the brane-world scenario we use, although only the outer horizon is relevant in the physical measurable processes. Parton cross sections in LHC and Hawking temperature are also investigated as functions of Planck mass (in the LHC range 1-10 TeV), mini-black hole mass, and the number of large extra dimensions in brane-world large extra-dimensional scenarios. In this case a more realistic brane-effect-corrected formalism can achieve more precisely the effective extra-dimensional Planck mass and the number of large extra dimensions-in the Arkani-Hamed-Dimopoulos-Dvali model-or the size of the warped extra dimension-in Randall-Sundrum formalism.
Resumo:
The absorption cross section of black holes has been investigated for various fields. Nevertheless, the absorption cross section of Schwarzschild black holes for the electromagnetic field has been only calculated in the low- and high-frequency approximations until now. Here we compute it numerically for arbitrary frequencies.
Resumo:
We discuss the Gupta-Bleuler quantization of the free electromagnetic field outside static black holes in the Boulware vacuum. We use a gauge which reduces to the Feynman gauge in Minkowski spacetime. We also discuss its relation with gauges used previously. Then we apply the low-energy sector of this held theory to investigate some low-energy phenomena. First, we discuss the response rate of a static charge outside the Schwarzschild black hole in four dimensions. Next, motivated by string physics, we compute the absorption cross sections of low-energy plane waves for the Schwarzschild and extreme Reissner-Nordstrom black holes in arbitrary dimensions higher than three.
Resumo:
We study the optical paths of the light rays propagating inside a nonlinear moving dielectric medium. For rapidly moving dielectrics we show the existence of a distinguished surface which resembles, as far as the light propagation is concerned, the event horizon of a black hole. Our analysis clarifies the physical conditions under which electromagnetic analogues of gravitational black holes can eventually be obtained in laboratory.
Resumo:
We study attractor mechanism in extremal black holes of Einstein-Born-Infeld theories in four dimensions. We look for solutions which are regular near the horizon and show that they exist and enjoy the attractor behavior. The attractor point is determined by extremization of the effective potential at the horizon. This analysis includes the backreaction and supports the validity of non-supersymmetric attractors in the presence of higher derivative interactions in the gauge field part. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We use the black hole entropy function to study the effect of Born-Infeld terms on the entropy of extremal black holes in heterotic string theory in four dimensions. We find, that after adding a set of higher curvature terms to the effective action, attractor mechanism, works and Born-Infeld terms contribute to the stretching of near horizon geometry. In the α′ → 0 limit, the solutions of attractor equations for moduli, fields and the resulting entropy, are in conformity with the ones for standard two charge black holes.
Resumo:
A search for microscopic black holes in pp collisions at a center-of-mass energy of 7TeV is presented. The data sample corresponds to an integrated luminosity of 4.7 fb1 recorded by the CMS experiment at the LHC in 2011. Events with large total transverse energy have been analyzed for the presence of multiple energetic jets, leptons, and photons, which are typical signals of evaporating semiclassical and quantum black holes, and string balls. Agreement with the expected standard model backgrounds, which are dominated by QCD multijet production, has been observed for various combined multiplicities of jets and other reconstructed objects in the final state. Model-independent limits are set on new physics processes producing high-multiplicity, energetic final states. In addition, new model-specific indicative limits are set excluding semiclassical and quantum black holes with masses below 3.8 to 5.3TeV and string balls with masses below 4.6 to 4.8TeV . The analysis has a substantially increased sensitivity compared to previous searches.
Resumo:
A realistic model describing a black string-like object in an expanding Universe is analyzed in the context of the McVittie's solution of the Einstein field equations. The bulk metric near the brane is provided analogously to previous solutions for black strings. In particular, we show that at least when the Hubble parameter on the brane is positive, a black string-like object seems to play a fundamental role in the braneworld scenario, generalizing the standard black strings in the context of a dynamical brane. © 2013 Elsevier B.V.
Resumo:
A search for microscopic black holes and string balls is presented, based on a data sample of pp collisions at √s=8 TeV recorded by the CMS experiment at the Large Hadron Collider and corresponding to an integrated luminosity of 12 fb-1. No excess of events with energetic multiparticle final states, typical of black hole production or of similar new physics processes, is observed. Given the agreement of the observations with the expected standard model background, which is dominated by QCD multijet production, 95% confidence level limits are set on the production of semiclassical or quantum black holes, or of string balls, corresponding to the exclusions of masses below 4.3 to 6.2 TeV, depending on model assumptions. In addition, model-independent limits are set on new physics processes resulting in energetic multiparticle final states. [Figure not available: see fulltext.] © 2013 CERN for the benefit of the CMS collaboration.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We report results from a search for gravitational waves produced by perturbed intermediate mass black holes ( IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency 50 <= f(0)/Hz <= 2000 and decay timescale 0.0001 less than or similar to tau/s less than or similar to 0.1 characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass 50 <= M/ M circle dot <= 450 and component mass ratios of either 1: 1 or 4: 1. For systems with total mass 100 <= M/M circle dot <= 150, we report a 90% confidence upper limit on the rate of binary IMBH mergers with nonspinning and equal mass components of 6.9 x 10(-8) Mpc(-3) yr(-1). We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, l = m = 2, oscillation mode, that is nearly three orders of magnitude more stringent than previous results.