26 resultados para BIOLOGICAL DETECTION
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A liquid phase blocking ELISA (LPB-ELISA) was developed for the detection and measurement of antibodies against infectious bronchitis virus (IBV). The purified and nonpurified virus used as antigen, the capture and detector antibodies, and the chicken hyperimmune sera were prepared and standardized for this purpose. A total of 156 sera from vaccinated and 100 from specific pathogen-free chickens with no recorded contact with the virus were tested. The respective serum titers obtained in the serum neutralization test (SNT) were compared with those obtained in the LPB-ELISA. There was a high correlation (r2 = 0.8926) between the two tests. The LPB-ELISA represents a single test suitable for the rapid detection of antibodies against bronchitis virus in chicken sera, with good sensitivity (88%), specificity (100%) and agreement (95.31%).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
1. Immunocytochemical procedures have played an increasingly larger role in the identification of infectious disease agents in tissue sections owing to the increased availability and specificity of antibody reagents, the great sensitivity of the methods, and the relative facility with which the studies are performed.2. Immunocytochemical methods can be applied to routine formalin-fixed tissue for the detection of infectious agents such as viruses, bacteria, fungi, and protozoa among other microorganisms for diagnostic and research purposes.
Resumo:
The use of Saccharomyces cerevisiae as a sorbent material to separate Cd(II) and Cd-metallothionein complex (Cd-MT) has been explored. Solid-liquid phase extractions were carried out in batch mode and the main parameters of the process (pH, temperature, time of incubation, amount of biomass and analyte) were evaluated. Under optimized conditions, the yeast quantitatively retain (94 +/- 5%) the Cd(II) while 97 +/- 2% of the Cd-MT remain in the supernatant. on base of the findings of this study, a simple method is proposed to determine Cd(II) and Cd-MT in cytosols extracted from mouse kidney and crab hepatopancreas. Inductively coupled plasma optical emission spectrometry was used to quantify the analytes in solid and liquid phase. Determination of Cd in the solid phase was carried out by introducing a slurry of the yeast (0.0625 g/10 mL) directly to the inductively coupled plasma optical emission spectrometer. Mixed standards solutions, which also have been submitted to the extraction procedure, were used to quantify the analytes in the samples. Thus, matrix effects due to nebulization of the slurry were overcame. Limits of detection (3 sigma) for Cd(II) and Cd-MT were 1.5 and 1.2 mu g L-1, respectively. Relative standard deviations of signals were 4.2% for measurements in the slurry of solid phase and 2.1% for measurements in the liquid phase. Recoveries of the analytes in cytosol samples were between 76 and 114%. The concentrations of Cd(II) (2.4 +/- 0.5 mu g L-1) and Cd-MT (3.0 +/- 0.5 mu g L-1) found by using the proposed approach were close to those found by tangential-flow ultrafiltration technique (2.6 +/- 0.7 mu g L-1 for Cd(II) and 3.7 +/- 1.7 mu g L-1 for Cd-MT).
Resumo:
Sodium nitroprusside (NP), a commercial vasodilator, can be pre-concentrated on vitreous carbon electrode modified by films of 97.5%: 2.5% Poly-L-lysine (PLL): glutaraldehyde (GA). This coating gives acceptable anion exchange properties whilst giving the required improvement of adhesion to the glassy carbon electrode surface. Linear response range and detection limit on nitroprusside in B-R buffer pH 4.0, were 1 x 10(-6) to 2 x 10-(5) mol L-1 and 1 x 10(-7) mol L-1, respectively. The repeatability of the proposed sensor, evaluated in term of relative standard deviation, was measured as 4.1% for 10 experiments. The voltammetric sensor was directly applied to determination of nitroprusside in human plasma and urine samples and the average recovery for these samples was around 95-97% without any pre treatment.
Resumo:
Organotin compounds, largely used as biocides in antifouling paints, are among the most toxic materials introduced into the aquatic environment. Sensitive analytical methods are thus required to characterize their occurrence in environmental and biological matrices. The comparison between two different photometric detectors in terms of analytical performance was carried out for the analysis of organotin compounds. A flame photometric detector (FPD) and a pulsed flame photometric detector (PFPD) were optimized. Their respective sensitivity, linearity range and selectivity were evaluated. Limits of detection obtained for a tributyltin compound (TBT) were 5.0 and 0.9 pg (as Sn) for the FPD and PFPD, respectively, using a 390 nm filter. The PFPD showed higher selectivity, besides reduced gas consumption in the flame, and is very attractive for organotin compound speciation in complex environmental matrices.
Resumo:
1. Cell proliferation is of interest since abnormal cell proliferation appears to be a precursor of tumorigenesis and also because the quantitative description of cell proliferation in tumors can be used to predict the biological behavior of a particular neoplasia.2. Them am several reliable methods of studying cell proliferation in tissues. One of the most important is the detection of the Ki67 defined antigen in frozen sections. The number of cells expressing Ki67 correlates with histological grades of tumors and can also be predictive of clinical outcome. The Ki67 can be localized in tissue sections using monoclonal antibodies in association with the immunoperoxidase technique.3. Proliferating cell nuclear antigen (PCNA) is a component of DNA polymerase-delta and is another important cell proliferation marker manifesting a striking increase in concentration during the S phase of the cell cycle. 19A2 and PC10 are two different monoclonal antibodies which can be employed to detect PCNA in paraffin-embedded tissues.4. Molecular biology has also been making a great contribution to the study of cell proliferation. The most recent innovation in tissue identification of proliferating cells is the use of in situ hybridization for the localization of histone H3 and/or H4 mRNA. H3 mRNA-positive cells appear to be present in basal cells of the skin and in crypt cells of the intestine which are sites with high proliferation rate.
Resumo:
Research on Blindsight, Neglect/Extinction and Phantom limb syndromes, as well as electrical measurements of mammalian brain activity, have suggested the dependence of vivid perception on both incoming sensory information at primary sensory cortex and reentrant information from associative cortex. Coherence between incoming and reentrant signals seems to be a necessary condition for (conscious) perception. General reticular activating system and local electrical synchronization are some of the tools used by the brain to establish coarse coherence at the sensory cortex, upon which biochemical processes are coordinated. Besides electrical synchrony and chemical modulation at the synapse, a central mechanism supporting such a coherence is the N-methyl-D-aspartate channel, working as a 'coincidence detector' for an incoming signal causing the depolarization necessary to remove Mg 2+, and reentrant information releasing the glutamate that finally prompts Ca 2+ entry. We propose that a signal transduction pathway activated by Ca 2+ entry into cortical neurons is in charge of triggering a quantum computational process that accelerates inter-neuronal communication, thus solving systemic conflict and supporting the unity of consciousness. © 2001 Elsevier Science Ltd.
Resumo:
The objective of this study was to compare the different methods of detecting Toxoplasma gondii in sheep tissue, tested serologically positive by the indirect immunofluorescent antibody test (IFAT). Brain, diaphragm, and blood samples were collected from 522 sheep slaughtered at the São Manuel abattoir, São Paulo State, Brazil. Brain and diaphragm samples from IFAT seropositive animals were digested by both trypsin and pepsin and then injected into mice. Part of the digested samples was used to prepare slides for Giemsa staining and in the polymerase chain reaction (PCR). Tissue fragments were fixed in formalin and examined using hematoxilin-eosin (HE). Forty of the sheep (7.7%) were IFAT positive. T. gondii was isolated in 23 (59.0%) of the 39 mice with pepsin-digested brain samples and in 27 (69.0%) of the 39 with trypsin-digested brain samples. Injection of diaphragm samples led to T. gondii isolation in 26 (66.7%) of the 39 pepsin-digested samples and 21 (53.8%) of the 39 trypsin-digested samples. Cytological and hystopathological examination of both brains and diaphragms was negative in all examined sheep. PCR was positive in 7 (17.9%) of the trypsin and 2 (5.1%) of the pepsin-digested samples, while 9 (23.1%) of the trypsin and 3 (7.7%) of the pepsin-digested samples showed T. gondii DNA. T. gondii isolation rate in mice (n = 34; 85.0%) was significantly higher than detection by PCR (n = 15; 37.5%). © 2001 Elsevier Science B.V.
Resumo:
Fluorescence diagnosis of malignant lesions has been showed as an attractive optical technique due especially to its real-time response and a more objective and quantitative evaluation. Even though the oral cavity allows a direct examination many lesions are diagnosed when it is already in advanced stage, compromising the patient prognosis. In this study, the fluorescence spectroscopy was used to the detection of chemically induced carcinoma at the lateral border of the tongue in a hamster model. Two excitations wavelengths in visible region were applied: 442 and 532 nm. All the spectra results were analyzed comparing with the histopathological diagnosis. The better results were achieved with the 442 nm laser excitation. The spectra from carcinoma showed new emission bands and these were used to determined different ratios for a quantitative analysis. Using the 625-645 nm fluorescence range under 442 nm excitation (A3 coefficient) the percentage of false negative was of 9.1%, however the false positive percentage was of 18.5%. The 532 nm excitation provided a better normal tissue detection compared to 442 nm excitation. The ideal clinical condition is probably the use of multiple wavelengths excitation for a broader tissue fluorescence investigation.
Resumo:
In this study we optimized an enzyme-linked immunosorbent assay (ELISA) to evaluate bothropic venom levels in biological samples. These samples were obtained by two distinct protocols. In the first one, Swiss mice were injected with 1 LD 50 of Bothrops jararaca (B. jararaca) venom and 15 minutes later, animals were treated with ovine antibothropic serum. Blood and spleen homogenate samples were obtained 6 hours after antiserum therapy. Ovine antibothropic serum significantly neutralized venom levels in serum and spleen. In the second protocol, BALB/c mice were injected with 1 LD 50 of bothropic venom by either intraperitoneal (IP) or intradermal (ID) route and venom levels were evaluated 1, 3 and 6 hours after, in blood, spleen homogenates and urine. Serum and splenic venom levels were significantly higher in animals envenomed by IP route comparing with animals envenomed by ID route. Higher venom levels were also detected in urine samples from animals envenomed by IP route. However, these differences were not statistically significant. These results demonstrated that the optimized ELISA was adequate to quantify venom levels in different biological samples. This assay could, therefore, substitute the in vivo neutralizing assay and also be useful to evaluate the severity of human and experimental envenomations.
Resumo:
In the present study, we evaluated three techniques, mouse bioassay, histopathology, and polymerase chain reaction (PCR) to detect Toxoplasma gondii infection in tissues from experimentally infected pigs. Twelve mixed breed pigs, seronegative for T. gondii using an indirect immunofluorescent antibody test (IFAT), were used. Ten pigs were infected with 4 × 104 VEG strain oocysts, and two were maintained as uninfected controls. Animals were killed 60 days pos infection. Muscle (heart, tongue, diaphragm, and masseter) and brain samples were collected to investigate the presence of T. gondii tissue cysts by the different assay methods. For the bioassay, samples of brain (50 g) and pool of muscle samples (12.5 g of tongue, masseter, diaphragm, and heart) were used. PCR was performed using Tox4 and Tox5 primers which amplified a 529 bp fragment. The DNA extraction and PCR were performed three times, and all tissue samples were tested individually (brain, tongue, masseter, diaphragm, and heart). For histopathology, fragments of tissues were fixed in 10% of buffered formal saline and stained with HE. Histopathological results were all negative. PCR showed 25/150 (16.6%) positive samples, being 17/120 (14.1%) and 8/30 (26.6%) from muscle, and brain tissues, respectively. Tissue cysts of T. gondii were identified by mouse bioassay in 54/98 (55.1%) samples, being 31/48 (64.6%) from muscle samples, and 23/50 (46.0%) from brain samples. Toxoplasma gondii isolation in muscle samples by mouse bioassay was higher than in PCR (P < 0.01). Results indicate that DNA from pig tissues interfered with 529-bp-PCR sensitivity, and mouse bioassay was better than PCR in detecting T. gondii in tissues from pigs. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)