10 resultados para BACTERIAL OXIDATION

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxidation of research-grade covellite was investigated in respirometric and growth experiments with Thiobacillus ferrooxidans. Covellite was directly oxidized by T. ferrooxidans in respirometric experiments, but the pH of mineral salts medium increased to prohibitively high values because of high sulfide concentrations. In glycine-H 2SO 4 buffered medium the pH remained steady and the oxygen uptake activity of T. ferrooxidans was not inhibited. In cultures growing with covellite as the sole source of energy, the pH increased to about 4. Redox potential increased to 500-600 mV during bacterial oxidation of covellite in the presence and absence of additional Fe 2+, whereas it remained mostly at about 350 mV in abiotic control. Jarosite was a major solid-phase product in T. ferrooxidans cultures. The solubilization of copper from covellite in inoculated flasks was higher than that obtained in control flasks and was not enhanced in the presence of additional Fe 2+.The sample also contained bornite (Cu 5FeS 4) which released iron in solution under all experimental conditions. Accumulation of S 0 was apparent only in inoculated covellite samples. © 1997 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oxidative dissolution of research-grade chalcopyrite was characterized in respirometric and growth experiments with Thiobacillus ferrooxidans. In respirometric experiments with chalcopyrite, the pH of mineral salts medium increased to values that inhibited the oxygen uptake activity of T. ferrooxidans. In glycine-H 2SO 4 buffered medium the pH remained stable and oxygen uptake was not inhibited. In cultures growing with chalcopyrite as the sole source of energy, pH changes were only minor during the incubation. The redox potential values increased to about 600 mV during the bacterial oxidation of chalcopyrite in the presence and absence of additional Fe 2+, while they remained at about 350 mV in abiotic control flasks. Iron in chalcopyrite was solubilized and oxidized to Fe 3+ by T. ferrooxidans. In the abiotic controls, by comparison, less iron was solubilized and it remained as Fe 2+. Jarosite was a major solid- phase product in T. ferrooxidans cultures. The solub'flization of copper from chalcopyrite in inoculated flasks was enhanced in the presence of additional Fe 2+.Accumulation of S 0, reflecting partial oxidation of the S-entity of chalcopyrite, was apparent from the x-ray diffraction analysis of solid residues from the inoculated flasks as well the abiotic controls. © 1997 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The partitioning of Mn, Al, Zn, Cu and Ti ions in municipal sewage sludge was investigated before and after bioleaching processes effectuated by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Oxidation reduction potential increase and pH decrease were obtained as a result of bacterial activity. A less pronounced and constant decrease was obtained with A. ferrooxidans, whereas A. thiooxidans presented a lag phase before a steep pH decrease. Metal solubilization was accomplished in experimental systems supplemented with energy source, Fe2+ for A. ferrooxidans and S-0 for A. thiooxidans. Solubilization efficiency differed for each metal except for Al, and was relatively similar for either organism. Metal partitioning was conducted using five-step sequential extraction procedure before and after the bioleaching. The results indicated that Zn and Mn ions were mostly associated with the organic fraction, whereas Cu, Al and Ti ions with the sulphide/ residue fraction. The bioleaching process caused prompt solubilization of metals mostly associated with the more labile fractions (exchangeable, adsorbed and organically bound metals), whereas those associated to the less labile ones (EDTA and sulphide/residue fractions) were exchanged towards more labile fractions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chalcopyrite oxidation was evaluated with two acidophilic thiobacilli that are important in bioleaching processes. Acidithiobacillus thiooxidans in pure culture did not oxidize CuFeS2 but oxidized externally added S in the presence of CuFeS2. Acidithiobacillus ferrooxidans released Cu2+ and soluble Fe from chalcopyrite, and the time course lead to a gradual passivation of chalcopyrite whereby Cu2+ dissolution leveled off. Fe3+ acted as a chemical oxidant in CuFeS2 leaching and was reduced to Fe2+. Parallel bacterial re-oxidation of Fe2+ contributed to a high Fe3+/Fe2+ ratio and an increase in redox potential. Chemical oxidation of chalcopyrite was slow compared with A. ferrooxidans-initiated solubilization. X-ray analysis revealed new solid phases: (i) jarosite, found in solids from A. ferrooxidans cultures and in chemical controls that initially received Fe2+ or Fe3+, and (ii) S-0, found mostly in iron-amended A. ferrooxidans culture and the corresponding chemical controls. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)