6 resultados para Axial flow turbine
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Laminar axial flow of a pseudoplastic fluid food (soursop, juice) in annular ducts has been experimentally investigated. In the first part of the manuscript, the rheological behavior of soursop juice, being essential for the annular flow analysis, was completely determined from 9.3 to 49.4 degrees Brix and temperatures from 0.4 degrees C to 68.8 degrees C, using a rotational rheometer equipped with coaxial cylinders. In order to test the adequacy of the rheology results, pressure loss data in the laminar pipe flow were collected and then experimental and theoretical friction factors were compared, showing excellent agreement, which indicated the reliability of the Power-Law model for describing the soursop juices. In the second part, pressure loss in annular regions was measured and used to estimate friction factors, which were then compared to those resulted from analytical and semi-analytical equations. The principal contributions of this article are to provide a review on the determination of friction factors-Reynolds number of pseudoplastic fluids in annuli, and also supply extensive new experimental data on the rheological properties and pressure loss of an important shear-thinning fluid food, which is of particular interest for the food engineering process design. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Laminar forced convection inside tubes of various cross-section shapes is of interest in the design of a low Reynolds number heat exchanger apparatus. Heat transfer to thermally developing, hydrodynamically developed forced convection inside tubes of simple geometries such as a circular tube, parallel plate, or annular duct has been well studied in the literature and documented in various books, but for elliptical duct there are not much work done. The main assumption used in this work is a laminar flow of a power flow inside elliptical tube, under a boundary condition of first kind with constant physical properties and negligible axial heat diffusion (high Peclet number). To solve the thermally developing problem, we use the generalized integral transform technique (GITT), also known as Sturm-Liouville transform. Actually, such an integral transform is a generalization of the finite Fourier transform where the sine and cosine functions are replaced by more general sets of orthogonal functions. The axes are algebraically transformed from the Cartesian coordinate system to the elliptical coordinate system in order to avoid the irregular shape of the elliptical duct wall. The GITT is then applied to transform and solve the problem and to obtain the once unknown temperature field. Afterward, it is possible to compute and present the quantities of practical interest, such as the bulk fluid temperature, the local Nusselt number and the average Nusselt number for various cross-section aspect ratios. (C) 2006 Elsevier. SAS. All rights reserved.
Resumo:
Here we present two-phase flow nonlinear parameter estimation for HFC's flow through capillary tube-suction line heat exchangers, commonly used as expansion devices in small refrigeration systems. The simplifying assumptions adopted are: steady state, pure refrigerant, one-dimensional flow, negligible axial heat conduction in the fluid, capillary tube and suction line walls. Additionally, it is considered that the refrigerant is free from oil and both phases are assumed to be at the same pressure, that is, surface tension effects are neglected. Metastable flow effects are also disregarded, and the vapor is assumed to be saturated at the local pressure. The so-called homogeneous model, involving three, first order, ordinary differential equations is applied to analyze the two-phase flow region. Comparison is done with experimental measurements of the mass flow rate and temperature distribution along capillary tubes working with refrigerant HFC-134a in different operating conditions.
Resumo:
Objectives: This study measured the water flow commonly used in high-speed handpieces to evaluate the water flow's influence on temperature generation. Different flow speeds were evaluated between turbines that had different numbers of cooling apertures. Method and materials: Two water samples were collected from each high-speed handpiece at private practices and at the School of Dentistry at São José dos Campos. The first sample was collected at the customary flow and the second was collected with the terminal opened for maximum flow. The two samples were collected into weighed glass receptacles after 15 seconds of turbine operation. The glass receptacles were reweighed and the difference between weights was recorded to calculate the water flow in mL/min and for further statistical analysis. Results: The average water flow for 137 samples was 29.48 mL/min. The flow speeds obtained were 42.38 mL/min for turbines with one coolant aperture; 34.31 mL/min for turbines with two coolant apertures; and 30.44 mL/min for turbines with three coolant apertures. There were statistical differences between turbines with one and three coolant apertures (Tukey-Kramer multiple comparisons test with P < .05). Conclusion: Turbine handpieces with one cooling aperture distributed more water for the burs than high-speed handpieces with more than one aperture.
Resumo:
The objective of the present article is to assess and compare the performance of electricity generation systems integrated with downdraft biomass gasifiers for distributed power generation. A model for estimating the electric power generation of internal combustion engines and gas turbines powered by syngas was developed. First, the model determines the syngas composition and the lower heating value; and second, these data are used to evaluate power generation in Otto, Diesel, and Brayton cycles. Four synthesis gas compositions were tested for gasification with: air; pure oxygen; 60% oxygen with 40% steam; and 60% air with 40% steam. The results show a maximum power ratio of 0.567 kWh/Nm(3) for the gas turbine system, 0.647 kWh/Nm(3) for the compression ignition engine, and 0.775 kWh/Nm(3) for the spark-ignition engine while running on synthesis gas which was produced using pure oxygen as gasification agent. When these three systems run on synthesis gas produced using atmospheric air as gasification agent, the maximum power ratios were 0.274 kWh/Nm(3) for the gas turbine system, 0.302 kWh/Nm(3) for CIE, and 0.282 kWh/Nm(3) for SIE. The relationship between power output and synthesis gas flow variations is presented as is the dependence of efficiency on compression ratios. Since the maximum attainable power ratio of CIE is higher than that of SIE for gasification with air, more research should be performed on utilization of synthesis gas in CIE. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The performance and emissions behavior of a Rover 1S/60 turboshaft engine when operated with several blends of aviation kerosene and ox tallow ethyl-ester are shown in this article. The tests were performed with a compressor shaft coupled to an hydraulic dynamometer where data of power and mass fuel flow were collected to determine the brake specific fuel consumption. A flue gas analyzer was positioned at the exhaust duct to collect oxygen, carbon dioxide, carbon monoxide and nitrous oxides. An increase in the specific fuel consumption was observed due to the lesser lower heating value of the most oxygenated blends. However, reductions of CO, CO2 and NO (x) have been observed and no-significant ill effects have occurred in the turbine operation.