20 resultados para Automatic rule extraction
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
An overview is given on the possibility of controlling the status of circuit breakers (CB) in a substations with the use of a knowledge base that relates some of the operation magnitudes, mixing status variables with time variables and fuzzy sets. It is shown that even when all the magnitudes to be controlled cannot be included in the analysis, it is possible to control the desired status while supervising some important magnitudes as the voltage, power factor, and harmonic distortion, as well as the present status.
Resumo:
We analyze the average performance of a general class of learning algorithms for the nondeterministic polynomial time complete problem of rule extraction by a binary perceptron. The examples are generated by a rule implemented by a teacher network of similar architecture. A variational approach is used in trying to identify the potential energy that leads to the largest generalization in the thermodynamic limit. We restrict our search to algorithms that always satisfy the binary constraints. A replica symmetric ansatz leads to a learning algorithm which presents a phase transition in violation of an information theoretical bound. Stability analysis shows that this is due to a failure of the replica symmetric ansatz and the first step of replica symmetry breaking (RSB) is studied. The variational method does not determine a unique potential but it allows construction of a class with a unique minimum within each first order valley. Members of this class improve on the performance of Gibbs algorithm but fail to reach the Bayesian limit in the low generalization phase. They even fail to reach the performance of the best binary, an optimal clipping of the barycenter of version space. We find a trade-off between a good low performance and early onset of perfect generalization. Although the RSB may be locally stable we discuss the possibility that it fails to be the correct saddle point globally. ©2000 The American Physical Society.
Resumo:
Several kinds of research in road extraction have been carried out in the last 6 years by the Photogrammetry and Computer Vision Research Group (GPF&VC - Grupo de Pesquisa em Fotogrametria e Visão Computacional). Several semi-automatic road extraction methodologies have been developed, including sequential and optimizatin techniques. The GP-F&VC has also been developing fully automatic methodologies for road extraction. This paper presents an overview of the GP-F&VC research in road extraction from digital images, along with examples of results obtained by the developed methodologies.
Resumo:
The purpose of this paper is to introduce a methodology for semi-automatic road extraction from aerial digital image pairs by using dynamic programming and epipolar geometry. The method uses both images from where each road feature pair is extracted. The operator identifies the corresponding road featuresand s/he selects sparse seed points along them. After all road pairs have been extracted, epipolar geometry is applied to determine the automatic point-to-point correspondence between each correspondent feature. Finally, each correspondent road pair is georeferenced by photogrammetric intersection. Experiments were made with rural aerial images. The results led to the conclusion that the methodology is robust and efficient, even in the presence of shadows of trees and buildings or other irregularities.
Resumo:
This paper proposes a methodology for edge detection in digital images using the Canny detector, but associated with a priori edge structure focusing by a nonlinear anisotropic diffusion via the partial differential equation (PDE). This strategy aims at minimizing the effect of the well-known duality of the Canny detector, under which is not possible to simultaneously enhance the insensitivity to image noise and the localization precision of detected edges. The process of anisotropic diffusion via thePDE is used to a priori focus the edge structure due to its notable characteristic in selectively smoothing the image, leaving the homogeneous regions strongly smoothed and mainly preserving the physical edges, i.e., those that are actually related to objects presented in the image. The solution for the mentioned duality consists in applying the Canny detector to a fine gaussian scale but only along the edge regions focused by the process of anisotropic diffusion via the PDE. The results have shown that the method is appropriate for applications involving automatic feature extraction, since it allowed the high-precision localization of thinned edges, which are usually related to objects present in the image. © Nauka/Interperiodica 2006.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
The use of physical characteristics for human identification is known as biometrics. Among the many biometrics traits available, the fingerprint is the most widely used. The fingerprint identification is based on the impression patterns, as the pattern of ridges and minutiae, characteristics of first and second levels respectively. The current identification systems use these two levels of fingerprint features due to the low cost of the sensors. However, the recent advances in sensor technology, became possible to use third level features present within the ridges, such as the perspiration pores. Recent studies show that the use of third-level features can increase security and fraud protection in biometric systems, since they are difficult to reproduce. In addition, recent researches have also focused on multibiometrics recognition due to its many advantages. The goal of this research project was to apply fusion techniques for fingerprint recognition in order to combine minutia, ridges and pore-based methods and, thus, provide more robust biometrics recognition systems, and also to develop an automated fingerprint identification system using these three methods of recognition. We evaluated isotropic-based and adaptive-based automatic pore extraction methods, and the fusion of pore-based method with the identification methods based on minutiae and ridges. The experiments were performed on the public database PolyUHRF and showed a reduction of approximately 16% in the EER compared to the best results obtained by the methods individually
Resumo:
This article presents an automatic methodology for extraction of road seeds from high-resolution aerial images. The method is based on a set of four road objects and another set of connection rules among road objects. Each road object is a local representation of an approximately straight road fragment and its construction is based on a combination of polygons describing all relevant image edges, according to some rules embodying road knowledge. Each one of the road seeds is composed by a sequence of connected road objects, in which each sequence of this type can be geometrically structured as a chain of contiguous quadrilaterals. Experiments carried out with high-resolution aerial images showed that the proposed methodology is very promising in extracting road seeds. This article presents the fundamentals of the method and the experimental results, as well.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Off line extraction of phenol from human urine sample with isoamyl alcohol and determination by HPLC
Resumo:
This method has been developed for extraction and determination of phenol in a urine sample by high performance liquid chromatography.After acid hydrolysis, the free phenol was extracted with isoamyl alcohol solvent, followed by back extraction with 0.5 mol.L-1 sodium hydroxide solution and analyzed by an isocratic HPLC Varian System, equipped with reverse-phase column (MicroPak-C-18). The mobile phase was acetonitrile in 0.01 mol.L-1 hydrochloric acid solution, (20:80 v/v), and at a now-rate of 1.0 mL.min-1. The chromatogram was monitored at 220 nm in room temperature. The identification was based on retention time and the quantification was performed by automatic peak-area determination, corrected for the external standards method.The recovery was higher than 99.5 % for phenol and reproducibility of method was shown to be 2.3% standard deviation and 5.6% coefficient of variance (n=20). The limit detection was 0.05 mgL(-1) and a range of 0.05 to 20.0 mgL(-1) of phenol for linearity.
Resumo:
A method has been developed for extraction and determination of carbofuran in milk. The method involved direct injection of raw milk on to a human serum albumin dimethyloctyl-silica gel (HSA-Cs) column and the use of 80:20 (v/v) 0.01 M phosphate buffer pH 5.5 - acetonitrile as mobile phase. UV spectrophotometric detection was performed at 220 nm. Identification was based on retention time. Quantification was performed by automatic peak-area determination and was calibrated by use of an external standard.
Resumo:
The acquisition and update of Geographic Information System (GIS) data are typically carried out using aerial or satellite imagery. Since new roads are usually linked to georeferenced pre-existing road network, the extraction of pre-existing road segments may provide good hypotheses for the updating process. This paper addresses the problem of extracting georeferenced roads from images and formulating hypotheses for the presence of new road segments. Our approach proceeds in three steps. First, salient points are identified and measured along roads from a map or GIS database by an operator or an automatic tool. These salient points are then projected onto the image-space and errors inherent in this process are calculated. In the second step, the georeferenced roads are extracted from the image using a dynamic programming (DP) algorithm. The projected salient points and corresponding error estimates are used as input for this extraction process. Finally, the road center axes extracted in the previous step are analyzed to identify potential new segments attached to the extracted, pre-existing one. This analysis is performed using a combination of edge-based and correlation-based algorithms. In this paper we present our approach and early implementation results.
Resumo:
Semi-automatic building detection and extraction is a topic of growing interest due to its potential application in such areas as cadastral information systems, cartographic revision, and GIS. One of the existing strategies for building extraction is to use a digital surface model (DSM) represented by a cloud of known points on a visible surface, and comprising features such as trees or buildings. Conventional surface modeling using stereo-matching techniques has its drawbacks, the most obvious being the effect of building height on perspective, shadows, and occlusions. The laser scanner, a recently developed technological tool, can collect accurate DSMs with high spatial frequency. This paper presents a methodology for semi-automatic modeling of buildings which combines a region-growing algorithm with line-detection methods applied over the DSM.
Resumo:
This paper presents an automatic methodology for road network extraction from medium-and high-resolution aerial images. It is based on two steps. In the first step, the road seeds (i.e., road segments) are extracted using a set of four road objects and another set of connection rules among road objects. Each road object is a local representation of an approximately straight road fragment and its construction is based on a combination of polygons describing all relevant image edges, according to some rules embodying road knowledge. Each road seed is composed by a sequence of connected road objects in which each sequence of this type can be geometrically structured as a chain of contiguous quadrilaterals. In the second step, two strategies for road completion are applied in order to generate the complete road network. The first strategy is based on two basic perceptual grouping rules, i.e., proximity and collinearity rules, which allow the sequential reconstruction of gaps between every pair of disconnected road segments. This strategy does not allow the reconstruction of road crossings, but it allows the extraction of road centerlines from the contiguous quadrilaterals representing connected road segments. The second strategy for road completion aims at reconstructing road crossings. Firstly, the road centerlines are used to find reference points for road crossings, which are their approximate positions. Then these points are used to extract polygons representing the contours of road crossings. This paper presents the proposed methodology and experimental results. © Pleiades Publishing, Inc. 2006.