15 resultados para Automatic Animal Call Recognition

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we shed light over the problem of landslide automatic recognition using supervised classification, and we also introduced the OPF classifier in this context. We employed two images acquired from Geoeye-MS satellite at March-2010 in the northwest (high steep areas) and north sides (pipeline area) covering the area of Duque de Caxias city, Rio de Janeiro State, Brazil. The landslide recognition rate has been assessed through a cross-validation with 10 runnings. In regard to the classifiers, we have used OPF against SVM with Radial Basis Function for kernel mapping and a Bayesian classifier. We can conclude that OPF, Bayes and SVM achieved high recognition rates, being OPF the fastest approach. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leptodactylus mystaceus, uma espécie com ampla distribuição geográfica pela América do Sul, é diagnosticada com base em exemplares do Estado de São Paulo, seu limite meridional de distribuição geográfica. Apresentamos aqui o primeiro registro da espécie para o Sudeste do Brasil, ampliando sua distribuição conhecida em cerca de 1.300 km ao sudeste. Também incluímos a descrição da vocalização de anúncio, informações sobre história natural, fotografia em vida e desenhos de caracteres morfológicos que auxiliam na identificação desta espécie.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A body of research has developed within the context of nonlinear signal and image processing that deals with the automatic, statistical design of digital window-based filters. Based on pairs of ideal and observed signals, a filter is designed in an effort to minimize the error between the ideal and filtered signals. The goodness of an optimal filter depends on the relation between the ideal and observed signals, but the goodness of a designed filter also depends on the amount of sample data from which it is designed. In order to lessen the design cost, a filter is often chosen from a given class of filters, thereby constraining the optimization and increasing the error of the optimal filter. To a great extent, the problem of filter design concerns striking the correct balance between the degree of constraint and the design cost. From a different perspective and in a different context, the problem of constraint versus sample size has been a major focus of study within the theory of pattern recognition. This paper discusses the design problem for nonlinear signal processing, shows how the issue naturally transitions into pattern recognition, and then provides a review of salient related pattern-recognition theory. In particular, it discusses classification rules, constrained classification, the Vapnik-Chervonenkis theory, and implications of that theory for morphological classifiers and neural networks. The paper closes by discussing some design approaches developed for nonlinear signal processing, and how the nature of these naturally lead to a decomposition of the error of a designed filter into a sum of the following components: the Bayes error of the unconstrained optimal filter, the cost of constraint, the cost of reducing complexity by compressing the original signal distribution, the design cost, and the contribution of prior knowledge to a decrease in the error. The main purpose of the paper is to present fundamental principles of pattern recognition theory within the framework of active research in nonlinear signal processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main purpose of this work is the development of computational tools in order to assist the on-line automatic detection of burn in the surface grinding process. Most of the parameters currently employed in the burning recognition (DPO, FKS, DPKS, DIFP, among others) do not incorporate routines for automatic selection of the grinding passes, therefore, requiring the user's interference for the choice of the active region. Several methods were employed in the passes extraction; however, those with the best results are presented in this article. Tests carried out in a surface-grinding machine have shown the success of the algorithms developed for pass extraction. Copyright © 2007 by ABCM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biometrics is one of the biggest tendencies in human identification. The fingerprint is the most widely used biometric. However considering the automatic fingerprint recognition a completely solved problem is a common mistake. The most popular and extensively used methods, the minutiae-based, do not perform well on poor-quality images and when just a small area of overlap between the template and the query images exists. The use of multibiometrics is considered one of the keys to overcome the weakness and improve the accuracy of biometrics systems. This paper presents the fusion of a minutiae-based and a ridge-based fingerprint recognition method at rank, decision and score level. The fusion techniques implemented leaded to a reduction of the Equal Error Rate by 31.78% (from 4.09% to 2.79%) and a decreasing of 6 positions in the rank to reach a Correct Retrieval (from rank 8 to 2) when assessed in the FVC2002-DB1A database. © 2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The applications of Automatic Vowel Recognition (AVR), which is a sub-part of fundamental importance in most of the speech processing systems, vary from automatic interpretation of spoken language to biometrics. State-of-the-art systems for AVR are based on traditional machine learning models such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), however, such classifiers can not deal with efficiency and effectiveness at the same time, existing a gap to be explored when real-time processing is required. In this work, we present an algorithm for AVR based on the Optimum-Path Forest (OPF), which is an emergent pattern recognition technique recently introduced in literature. Adopting a supervised training procedure and using speech tags from two public datasets, we observed that OPF has outperformed ANNs, SVMs, plus other classifiers, in terms of training time and accuracy. ©2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spermatogenesis is crucial to the species reproduction, and its monitoring may shed light over some important information of such process. Thus, the germ cells quantification can provide useful tools to improve the reproduction cycle. In this paper, we present the first work that address this problem in fishes with machine learning techniques. We show here how to obtain high recognition accuracies in order to identify fish germ cells with several state-of-the-art supervised pattern recognition techniques. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Duplex and superduplex stainless steels are class of materials of a high importance for engineering purposes, since they have good mechanical properties combination and also are very resistant to corrosion. It is known as well that the chemical composition of such steels is very important to maintain some desired properties. In the past years, some works have reported that γ 2 precipitation improves the toughness of such steels, and its quantification may reveals some important information about steel quality. Thus, we propose in this work the automatic segmentation of γ 2 precipitation using two pattern recognition techniques: Optimum-Path Forest (OPF) and a Bayesian classifier. To the best of our knowledge, this if the first time that machine learning techniques are applied into this area. The experimental results showed that both techniques achieved similar and good recognition rates. © 2012 Taylor & Francis Group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dental recognition is very important for forensic human identification, mainly regarding the mass disasters, which have frequently happened due to tsunamis, airplanes crashes, etc. Algorithms for automatic, precise, and robust teeth segmentation from radiograph images are crucial for dental recognition. In this work we propose the use of a graph-based algorithm to extract the teeth contours from panoramic dental radiographs that are used as dental features. In order to assess our proposal, we have carried out experiments using a database of 1126 tooth images, obtained from 40 panoramic dental radiograph images from 20 individuals. The results of the graph-based algorithm was qualitatively assessed by a human expert who reported excellent scores. For dental recognition we propose the use of the teeth shapes as biometric features, by the means of BAS (Bean Angle Statistics) and Shape Context descriptors. The BAS descriptors showed, on the same database, a better performance (EER 14%) than the Shape Context (EER 20%). © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The objective of this study was to assess the use of analgesics, describe the attitudes of Brazilian veterinarians towards pain relief in horses and cattle and evaluate the differences due to gender, year of graduation and type of practice. Study design: Prospective survey. Methods: Questionnaires were sent to 1000 large animal veterinarians by mail, internet and delivered in person during national meetings. The survey investigated the attitudes of Brazilian veterinarians to the recognition and treatment of pain in large animals and consisted of sections asking about demographic data, use of analgesic drugs, attitudes to pain relief and to the assessment of pain. Descriptive statistics were used to analyze frequencies. Simple post hoc comparisons were performed using the chi-square test. Results: Eight hundred questionnaires were collected, but 87 were discarded because they were incomplete or blank. The opioid of choice for use in large animals was butorphanol (43.4%) followed by tramadol (39%). Flunixin (83.2%) and ketoprofen (67.6%) were the most frequently used NSAIDs by Brazilian veterinarians. Respondents indicated that horses received preoperative analgesics for laparotomy more frequently (72.9%) than cattle (58.5%). The most frequently administered preoperative drugs for laparotomy in horses were flunixin (38.4%) and xylazine (23.6%), whereas the preoperative drugs for the same surgical procedure in cattle were xylazine (31.8%) and the local administration of lidocaine (48%). Fracture repair was considered the most painful surgical procedure for both species. Most veterinarians (84.1%) believed that their knowledge in this area was not adequate. Conclusions and clinical relevance: Although these Brazilian veterinarians thought that their knowledge on recognition and treatment of pain was not adequate, the use of analgesic in large animals was similar in Brazil to that reported in other countries. © 2013 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human intestinal parasites constitute a problem in most tropical countries, causing death or physical and mental disorders. Their diagnosis usually relies on the visual analysis of microscopy images, with error rates that may range from moderate to high. The problem has been addressed via computational image analysis, but only for a few species and images free of fecal impurities. In routine, fecal impurities are a real challenge for automatic image analysis. We have circumvented this problem by a method that can segment and classify, from bright field microscopy images with fecal impurities, the 15 most common species of protozoan cysts, helminth eggs, and larvae in Brazil. Our approach exploits ellipse matching and image foresting transform for image segmentation, multiple object descriptors and their optimum combination by genetic programming for object representation, and the optimum-path forest classifier for object recognition. The results indicate that our method is a promising approach toward the fully automation of the enteroparasitosis diagnosis. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)