25 resultados para Augmentation gluteoplasty
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The restoration and recovery of the alveolar healing process are a challenge to dental surgeons to achieve satisfactory results at the osseointegration of implants and implant rehabilitation. Different operative technique and biomaterials are being used to reconstruct the framework of the alveolar process. One of the biomaterials used for this purpose is the bioactive glass. The aim of this study was to report clinical and histologic final results of 7 clinical reports of alveolar ridge augmentation using bioactive glass. Clinically, bioglass was able to maintain bone architecture of the alveolar bone and repaired satisfactory. Biopsy was performed on the histologic samples and showed bone formation in intimate contact to the particles of the biomaterial.
Resumo:
Background: Prosthetic rehabilitation of the posterior maxilla with dental implants is often difficult because of proximity to the maxillary sinus and insufficient bone height. Maxillary sinus floor augmentation procedures aim to obtain enough bone with an association between biomaterials and autogenous bone.Purpose: the purpose of this study was to evaluate histomorphometrically two grafting materials (calcium phosphate and Ricinus communis polymer) used in maxillary sinus floor augmentation associated with autogenous bone.Materials and Methods: Biopsies were taken from 10 consecutive subjects (mean age 45 years) 10 months after maxillary sinus floor augmentation. The sinus lift was performed with a mixture of autogenous bone and R. communis polymer or calcium phosphate in a 1:2 proportion. Routine histologic processing and staining with hernatoxylin and eosin were performed.Results: the histomorphometric analysis indicated satisfactory regenerative results in both groups for a mean of bone tissue in the grafted area (44.24 +/- 13.79% for the calcium phosphate group and 38.77 +/- 12.85% for the polymer group). Histologic evaluation revealed the presence of an inflammatory infiltrate of mononuclear prevalence that, on average, was nonsignificant. The histologic sections depicted mature bone with compact and cancellous areas in both groups.Conclusion: the results indicated that both graft materials associated with the autogenous bone were biocompatible, although both were still present after 10 months.
Resumo:
The aim of this study was to assess vascular endothelial growth factor (VEGF) expression and microvessel density (MVD) in maxillary sinus augmentation with autogenous bone and different graft materials for evaluating their angiogenic potential.Biopsies were harvested 10 months after sinus augmentation with a combination of autogenous bone and different graft materials: hydroxyapatite (HA, n = 6 patients), demineralized freeze-dried bone allograft (DFDBA, n = 5 patients), calcium phosphate (CP, n = 5 patients), Ricinus communis polymer (n = 5 patients) and control group - autogenous bone only (n = 13 patients).In all the samples, higher intensities of VEGF expression were prevalent in the newly formed bone, while lower intensities of VEGF expression were predominant in the areas of mature bone. The highest intensity of VEGF expression in the newly formed bone was expressed by HA (P < 0.001) and CP in relation to control (P < 0.01) groups. The lowest intensities of VEGF expression in newly formed bone were shown by DFDBA and polymer groups (P < 0.05). When comparing the different grafting materials, higher MVD were found in the newly formed bone around control, HA and CP (P < 0.001).Various graft materials could be successfully used for sinus floor augmentation; however, the interactions between bone formation and angiogenesis remain to be fully characterized.
Resumo:
The aim of the current study is to evaluate fresh-frozen human bone allografts (FHBAs) used in vertical ridge augmentation clinically and by computed tomography, and to analyze the resulting bone formation and graft resorption. Sixteen FHBAs were grafted in the maxillae and mandibles of 9 patients. The FHBAs, which were provided by the Musculoskeletal Tissue Bank of Marilia Hospital (Unioss), were frozen at -80A degrees C. After 7 months, dental implants were placed and bone parameters were evaluated. Vertical bone formation was measured by computerized tomography before (T0) and at 7 months (T1) after the surgical procedure. Bone graft resorption was measured clinically from a landmark screw head using a periodontal probe. The results were analyzed by Student's t-test. Significant differences existed in the bone formation values at T0 and T1, with an average change of 4.03 +/- A 1.69 mm. Bone graft resorption values were 1.0 +/- A 0.82 mm (20%). Implants were placed with varying insertion torque values (35-45 Ncm), and achieved primary stability. This study demonstrates that FHBAs promote satisfactory vertical bone formation with a low resorption rates, good density, and primary implant stability.
Resumo:
Purpose: The aim of this study was to evaluate the possibility of obtaining guided bone regeneration using a poly-tetrafluoroethylene (PTFE) nonporous barrier for 2 endosseous implants, partially inserted in tibiae of rabbits.Materials and Methods: Histologic characteristics of the interface between titanium implants (one group with titanium plasma-coated implants and the other group with acid-treated surfaces) and of the regenerated bone were also studied. Twenty screw-vent implants were placed in tibiae of 5 male New Zealand rabbits, 2 at the right side and 2 at the left side, protruding 3 mm from the bone level, to create a horizontal bone defect. At the experimental group the implants were with a PTFE nonporous barrier, whereas no barriers were used in contralateral implants. Animals were sacrificed 3 months after surgery and biopsy specimens were evaluated histologically and histomorphometrically under light microscopy. Student's t test was used for statistical analysis.Results: The histologic measurements showed a mean gain in bone height of 2.15 and 2.42 mm for the barrier group and 1.95 and 0.43 mm for the control group, for the titanium plasma-spray and acid-treated implant surfaces, respectively.Conclusion: The results of the investigation revealed that the placement of implants protruding 3 nun from crestal bone defects may result in vertical bone augmentation using a nonporous PTFE barrier. (Implant Dent 2009;18:182-191)
Resumo:
Background: Maxillary sinus floor augmentation procedures are currently the treatment of choice when the alveolar crest of the posterior maxilla is insufficient for dental implant anchorage. This procedure aims to obtain enough bone with biomaterial association with the autogenous bone graft to create volume and allow osteo conduction. The objective of this study was to histologically and histometrically evaluate the bone formed after maxillary sinus floor augmentation by grafting with a combination of autogenous bone, from the symphyseal area mixed with DFDBA or hydroxyapatite.Methods: Ten biopsies were taken from 10 patients 10 months after sinus floor augmentation using a combination of 50% autogenous bone plus 50% dernineralized freeze-dried bone allograft (DFDBA group) or 50% autogenous bone plus 50% hydroxyapatite (HA group). Routine histological processing and staining with hernatoxylin and eosin and Masson's trichrome were performed.Results: the histomorphometrical analysis indicated good regenerative results in both groups for the bone tissue mean in the grafted area (50.46 +/- 16.29% for the DFDBA group and 46.79 +/- 8.56% for the HA group). Histological evaluation revealed the presence of mature bone with compact and cancellous areas in both groups. The inflammatory infiltrate was on average nonsignificant and of mononuclear prevalence. Some biopsies showed blocks of the biomaterial in the medullary spaces close to the bone wall, with absence of osteogenic activity.Conclusions: the results indicated that both DFDBA and HA associated with an autogenous bone graft were biocompatible and promoted osteoconduction, acting as a matrix for bone formation. However, both materials were still present after 10 months.
Resumo:
Objective: This study evaluated the augmentation of venlafaxine with hormone therapy in the treatment of postmenopausal depression. The hormones evaluated were estrogen (0.625 mg) in combination with medroxyprogesterone acetate (2.5 mg) and methyltestosterone (2.5 mg). Design: Seventy-two menopausal women (mean age: 53.6 ± 4.27 years) diagnosed with depression (Montgomery-Åsberg Depression Rating Scale [MADRS] scores ≥ 20) were treated with venlafaxine and one of the following hormone therapy combinations, in a double-blind regimen: estrogen + medroxyprogesterone + methyltestosterone (group 1, n = 20); estrogen + medroxyprogesterone acetate (group 2, n = 20); methyltestosterone only (group 3, n = 16); and no hormone therapy (group 4, n = 16). Study duration was 24 weeks. Primary efficacy outcome was remission according to the MADRS, whereas secondary efficacy measures included the Clinical Global Impression (CGI), Blatt-Kupperman Index, and Women's Health Questionnaire (WHQ). Results: Forty-eight patients completed the study. All groups showed significant improvement from baseline. Group 3 demonstrated significant improvement on the MADRS compared with placebo (group 4) at weeks 20 (P = 0.048) and 24 (P = 0.030); effect size 8.04 (0.83; 15.26) (P = 0.029), but also had the highest dropout rate. Groups 1 and 3 had significant CGI improvement rates compared with placebo: 42.23% (P = 0.012) and 44.45% (P = 0.08), respectively. There were no differences in the WHQ or BKI scores among the groups. Conclusions: Methyltestosterone 2.5 mg had the highest effect size compared with placebo, but the high dropout rate prevented its efficacy from being determined. Estrogen plus medroxyprogesterone, combined with methyltestosterone or otherwise, demonstrated a trend toward increased efficacy of venlafaxine. Further larger-scale clinical trials are needed to elucidate the findings of this pilot study. © 2006 by The North American Menopause Society.
Resumo:
Modified fluorcanasite glasses were fabricated by either altering the molar ratios of Na 2O and CaO or by adding P 2O 5 to the parent stoichiometric glass compositions. Glasses were converted to glass-ceramics by a controlled two-stage heat treatment process. Rods (2 mm x 4 mm) were produced using the conventional lost-wax casting technique. Osteoconductive 45S5 bioglass was used as a reference material. Biocompatibility and osteoconductivity were investigated by implantation into healing defects (2 mm) in the midshaft of rabbit femora. Tissue response was investigated using conventional histology and scanning electron microscopy. Histological and histomorphometric evaluation of specimens after 12 weeks implantation showed significantly more bone contact with the surface of 45S5 bioglass implants when compared with other test materials. When the bone contact for each material was compared between experimental time points, the Glass-Ceramic 2 (CaO rich) group showed significant difference (p = 0.027) at 4 weeks, but no direct contact at 12 weeks. Histology and backscattered electron photomicrographs showed that modified fluorcanasite glass-ceramic implants had greater osteoconductivity than the parent stoichiometric composition. Of the new materials, fluorcanasite glass-ceramic implants modified by the addition of P 2O 5 showed the greatest stimulation of new mineralized bone tissue formation adjacent to the implants after 4 and 12 weeks implantation. © 2010 Wiley Periodicals, Inc.
Resumo:
Background: Previous studies have pointed out that the mere elevation of the maxillary sinus membrane promotes bone formation without the use of augmentation materials. Purpose: This experimental study aimed at evaluating if the two-stage procedure for sinus floor augmentation could benefit from the use of a space-making device in order to increase the bone volume to enable later implant installation with good primary stability. Materials and Methods: Six male tufted capuchin primates (Cebus apella) were subjected to extraction of the three premolars and the first molar on both sides of the maxilla to create an edentulous area. The sinuses were opened using the lateral bone-wall window technique, and the membrane was elevated. One resorbable space-making device was inserted in each maxillary sinus, and the bone window was returned in place. The animals were euthanatized after 6 months, and biopsy blocks containing the whole maxillary sinus and surrounding soft tissues were prepared for ground sections. Results: The histological examination of the specimens showed bone formation in contact with both the schneiderian membrane and the device in most cases even when the device was displaced. The process of bone formation indicates that this technique is potentially useful for two-stage sinus floor augmentation. The lack of stabilization of the device within the sinus demands further improvement of space-makers for predictable bone augmentation. Conclusions: It is concluded that (1) the device used in this study did not trigger any important inflammatory reaction; (2) when the sinus membrane was elevated, bone formation was a constant finding; and (3) an ideal space-making device should be stable and elevate the membrane to ensure a maintained connection between the membrane and the secluded space. © 2009 Wiley Periodicals, Inc.
Resumo:
This article presents a case report of autogenous tooth transplantation to the site of the fissure, in addition to bone augmentation with graft of autogenous bone harvested from the iliac crest, performed in a cleft palate patient, who had insufficient bone volume. A non-syndromic 10-year-old girl, with a unilateral cleft lip and palate, incisal transforamen fissures, agenesis of the maxillary left central incisor and both maxillary lateral incisors, was treated with autogenous bone graft in the cleft area. The orthodontic treatment plan was to replace the missing lateral incisors with the maxillary canines and to extract the mandibular first premolars. One of the mandibular premolars was extracted from its site with 2/3 of its root formation completed and transplanted to the maxillary left central incisor area. After orthodontic treatment, the anatomic crowns were characterized with composite resin. Autogenous tooth transplantation can be performed in the area of the fissure in young cleft palate patients, by performing bone graft augmentation before transplantation of the tooth, to gain sufficient recipient alveolar bone volume. A multidisciplinary approach is mandatory for the success of this clinical procedure, especially in cleft palate patients. © 2012 John Wiley & Sons A/S.
Resumo:
Objectives: This study aimed to comparatively evaluate the in vitro osteogenic potential of cells obtained from the mandibular ramus (MR, autogenous bone donor site) and from the maxillary sinus (MS) bone grafted with a mixture of anorganic bovine bone (ABB) and MR prior to titanium implant placement (MS, grafted implant site). Material and methods: Cells were obtained from three patients subjected to MS floor augmentation with a 1: 1 mixture of ABB (GenOx Inorg®) and MR. At the time of the sinus lift procedure and after 8 months, prior to implant placement, bone fragments were taken from MR and MS, respectively, and subjected to trypsin-collagenase digestion for primary cell culturing. Subcultured cells were grown under osteogenic condition for up to 21 days and assayed for proliferation/viability, osteoblast marker mRNA levels, alkaline phosphatase (ALP) activity and calcium content/Alizarin red staining. ALP activity was also determined in primary explant cultures exposed to GenOx Inorg® (1: 1 with MR) for 7 days. Data were compared using either the Mann-Whitney U-test or the Kruskal-Wallis test. Results: MS cultures exhibited a significantly lower osteogenic potential compared with MR cultures, with a progressive increase in cell proliferation together with a decrease in osteoblast markers, reduced ALP activity and calcium content. Exposure of MR-derived primary cultures to GenOx Inorg® inhibited ALP activity. Conclusion: These results suggest that the use of GenOx Inorg® in combination with MR fragments for MS floor augmentation inhibits the osteoblast cell differentiation at the implant site in the long term. © 2013 John Wiley & Sons A/S.
Resumo:
Objectives: To compare autogenous bone (AT) and fresh-frozen allogeneic bone (AL) in terms of histomorphometrical graft incorporation and implant osseointegration after grafting for lateral ridge augmentation in humans. Materials and methods: Thirty-four patients were treated with either AL (20 patients) or AT (14 patients) onlay grafts. During implant installation surgery 6 months after grafting, cylindrical biopsies were harvested perpendicularly to the lateral aspect of the augmented alveolar ridge. Additionally, titanium mini-implants were installed in the grafted regions, also perpendicularly to the ridge; these were biopsied during second-stage surgery. Histological/histomorphometric analysis was performed using decalcified and non-decalcified sections. Results: Histological analysis revealed areas of necrotic bone (NcB) occasionally in contact with or completely engulfed by newly formed vital bone (VB) in both AT and AL groups (55.9 ± 27.6 vs. 43.1 ± 20.3, respectively; P = 0.19). Statistically significant larger amounts of VB (27.6 ± 17.5 vs. 8.4 ± 4.9, respectively; P = 0.0002) and less soft connective tissue (ST) (16.4 ± 15.6 vs. 48.4 ± 18.1, respectively; P ≤ 0.0001) were seen for AT compared with AL. No significant differences were observed between the groups regarding both bone-to-implant contact (BIC) and the bone area between implant threads (BA) on the mini-implant biopsies. Conclusion: Allogeneic bone block grafts may be an option in cases where a limited amount of augmentation is needed, and the future implant can be expected confined within the inner aspect of the bone block. However, the clinical impact of the relatively poor graft incorporation on the long-term performance of oral implants placed in AL grafts remains obscure. © 2013 John Wiley & Sons A/S.
Resumo:
Objectives: To evaluate dimensional changes in autologous (AT) and fresh-frozen allogeneic (AL) block bone grafts 6 months after alveolar ridge augmentation. Material and methods: Twenty-six partially or totally edentulous patients treated either with fresh-frozen AL bone or AT bone onlay block grafts prior to implant placement (13 patients in each group), were included in this analysis. Patients received CBCT (i-CAT Classic) examinations prior to surgery and 14 days and 6 months after grafting. Differences in alveolar ridge area among the various observation times were evaluated by planimetric measurements on two-dimensional CBCT images of the grafted regions. Nineteen grafted blocks from each group were evaluated. Results: Significant increase in alveolar ridge dimensions, allowing implant placement, was obtained with both types of grafts 6 months after grafting; no significant differences in alveolar ridge area were observed between the groups at the various observation times. However, graft resorption in the AL group was significantly larger compared to that in the AT group at 6 months. Conclusions: Larger bone graft resorption was seen in patients treated with fresh-frozen AL bone than in those treated with AT bone 6 months following alveolar ridge augmentation. © 2011 John Wiley & Sons A/S.