12 resultados para Attack signature model
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Internal and external computer network attacks or security threats occur according to standards and follow a set of subsequent steps, allowing to establish profiles or patterns. This well-known behavior is the basis of signature analysis intrusion detection systems. This work presents a new attack signature model to be applied on network-based intrusion detection systems engines. The AISF (ACME! Intrusion Signature Format) model is built upon XML technology and works on intrusion signatures handling and analysis, from storage to manipulation. Using this new model, the process of storing and analyzing information about intrusion signatures for further use by an IDS become a less difficult and standardized process.
Resumo:
The SU(3)(L)circle times U(1)(N) electroweak model predicts new Higgs bosons beyond the one of the standard model. In this work we investigate the signature and production of neutral SU(3)(L)circle times U(1)(N) Higgs bosons in the e(-)e(+) Next Linear Collider and in the CERN Linear Collider . We compute the branching ratios of two of the SU(3)(L)circle times U(1)(N) neutral Higgs bosons and study the possibility to detect them and the Z' extra neutral boson of the model.
Resumo:
The SU(3)(L) circle times U(1)(N) electroweak model predicts new Higgs bosons beyond the one of the standard model. In this work we investigate the signature and production of doubly charged Higgs bosons in the e(+)e(-) International Linear Collider and in the CERN Linear Collider. We compute the branching ratios for the doubly charged gauge bosons of the model.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this article, an implementation of structural health monitoring process automation based on vibration measurements is proposed. The work presents an alternative approach which intent is to exploit the capability of model updating techniques associated to neural networks to be used in a process of automation of fault detection. The updating procedure supplies a reliable model which permits to simulate any damage condition in order to establish direct correlation between faults and deviation in the response of the model. The ability of the neural networks to recognize, at known signature, changes in the actual data of a model in real time are explored to investigate changes of the actual operation conditions of the system. The learning of the network is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data as well as measured experimental data.
Resumo:
Malicious programs (malware) can cause severe damage on computer systems and data. The mechanism that the human immune system uses to detect and protect from organisms that threaten the human body is efficient and can be adapted to detect malware attacks. In this paper we propose a system to perform malware distributed collection, analysis and detection, this last inspired by the human immune system. After collecting malware samples from Internet, they are dynamically analyzed so as to provide execution traces at the operating system level and network flows that are used to create a behavioral model and to generate a detection signature. Those signatures serve as input to a malware detector, acting as the antibodies in the antigen detection process. This allows us to understand the malware attack and aids in the infection removal procedures. © 2012 Springer-Verlag.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Purpose Mantle-cell lymphoma (MCL) has a variable natural history but is incurable with current therapies. MicroRNAs (miRs) are useful in prognostic assessment of cancer. We determined an miR signature defining aggressiveness in B-cell non-Hodgkin lymphomas (NHL) and assessed whether this signature aids in MCL prognosis.MethodsWe assessed miR expression in a training set of 43 NHL cases. The miR signature was validated in 44 additional cases and examined on a training set of 119 MCL cases from four institutions in Canada. miRs significantly associated with overall survival were examined in an independent cohort of 114 MCL cases to determine association with patient outcome. miR expression was combined with current clinical prognostic factors to develop an enhanced prognostic model in patients with MCL.ResultsFourteen miRs were differentially expressed between aggressive and indolent NHL; 11 of 14 were validated in an independent set of NHL (excluding MCL). miR-127-3p and miR-615-3p were significantly associated with overall survival in the MCL training set. Their expression was validated in an independent MCL patient set. In comparison with Ki-67, expression of these miRs was more significantly associated with overall survival among patients with MCL. miR-127-3p was combined with Ki-67 to create a new prognostic model for MCL. A similar model was created with miR-615-3p and Mantle Cell Lymphoma International Prognostic Index scores.ConclusionEleven miRs are differentially expressed between aggressive and indolent NHL. Two novel miRs were associated with overall survival in MCL and were combined with clinical prognostic models to generate novel prognostic data for patients with MCL. (C) 2013 by American Society of Clinical Oncology
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV