207 resultados para Atrophy
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The purpose of this investigation was to determine whether changes in myosin heavy chain (MHC) expression and atrophy in rat skeletal muscle are observed during transition from cardiac hypertrophy to chronic heart failure (CHF) induced by aortic stenosis (AS). AS and control animals were studied 12 and 18 weeks after surgery and when overt CHF had developed in AS animals, 28 weeks after the surgery. The following parameters were studied in the soleus muscle: muscle atrophy index (soleus weight/body weight), muscle fibre diameter and frequency and MHC expression. AS animals presented decreases in both MHC1 and type I fibres and increases in both MHC2a and type IIa fibres during late cardiac hypertrophy and CHF. Type IIa fibre atrophy occurred during CHF. In conclusion, our data demonstrate that skeletal muscle phenotype changes occur in both late cardiac hypertrophy and heart failure; this suggests that attention should be given to the fact that skeletal muscle phenotype changes occur prior to overt heart failure symptoms.
Resumo:
Apoptosis is necessary for maintaining the integrity of proliferative tissues, such as epithelial cells of the gastrointestinal and integumentary systems. The role of apoptosis in post-mitotic tissues, such as skeletal muscle, is less well defined, but several lines of evidence suggest that it occurs in both myofiber and other interstitial muscle cell types. Apoptosis of myonuclei likely contributes to the loss of muscle mass, but the mechanisms underlying this process are largely unknown. Caspase-dependent as well as caspase-independent pathways have been implicated, and the mode by which atrophy is induced likely determines the apoptotic mechanisms that are utilized. It remains to be determined whether a decrease in apoptosis will alleviate atrophy and distinct research strategies may be required to clarify the different causes of skeletal muscle mass loss. In this review, it was also speculated that apoptosis is a normal regulatory process that the myofiber can use to reduce the number of nuclear domains, thus ensuring optimal cell functions according to the mechanical load imposed on the muscle. ©FUNPEC-RP.
Resumo:
Studies have demonstrated that nutrient deficiency during pregnancy or in early postnatal life results in structural abnormalities in the offspring hippocampus and in cognitive impairment. In an attempt to analyze whether gestational protein restriction might induce learning and memory impairments associated with structural changes in the hippocampus, we carried out a detailed morphometric analysis of the hippocampus of male adult rats together with the behavioral characterization of these animals in the Morris water maze (MWM). Our results demonstrate that gestational protein restriction leads to a decrease in total basal dendritic length and in the number of intersections of CA3 pyramidal neurons whereas the cytoarchitecture of CA1 and dentate gyrus remained unchanged. Despite presenting significant structural rearrangements, we did not observe impairments in the MWM test. Considering the clear dissociation between the behavioral profile and the hippocampus neuronal changes, the functional significance of dendritic remodeling in fetal processing remains undisclosed. © 2012 ISDN.
Resumo:
Insulin is an important regulator of the ubiquitin-proteasome system (UPS) and of lysosomal proteolysis in cardiac muscle. However, the role of insulin in the regulation of the muscle atrophy-related Ub-ligases atrogin-1 and MuRF1 as well as in autophagy, a major adaptive response to nutritional stress, in the heart has not been characterized. We report here that acute insulin deficiency in the cardiac muscle of rats induced by streptozotocin increased the expression of atrogin-1 and MuRF1 as well as LC3 and Gabarapl1, 2 autophagy-related genes. These effects were associated with decreased phosphorylation levels of Akt and its downstream target Foxo3a; this phenomenon is a well-known effect that permits the maintenance of Foxo in the nucleus to activate protein degradation by proteasomal and autophagic processes. The administration of insulin increased Akt and Foxo3a phosphorylation and suppressed the diabetes-induced expression of Ub-ligases and autophagy-related genes. In cultured neonatal rat cardiomyocytes, nutritional stress induced by serum/glucose deprivation strongly increased the expression of Ub-ligases and autophagy-related genes; this effect was inhibited by insulin. Furthermore, the addition of insulin in vitro prevented the decrease in Akt/Foxo signaling induced by nutritional stress. These findings demonstrate that insulin suppresses atrophy- and autophagy-related genes in heart tissue and cardiomyocytes, most likely through the phosphorylation of Akt and the inactivation of Foxo3a. © Georg Thieme Verlag KG.
Resumo:
Pós-graduação em Ciências Biológicas (Genética) - IBB