9 resultados para Atomic medium

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the elastic scattering of positronium atoms by hydrogen atoms at medium energies using partial-wave Born-Oppenheimer (BO) exchange amplitudes and report accurate BO cross sections in the energy range 0 to 60 eV. The present BO results agree with a 22-state R-matrix and a five-state coupled-channel model potential calculation, but disagree strongly with a conventional close-coupling calculation as well as its input BO amplitudes at medium energies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the preparation of thin titanium films via sol-gel route and their subsequent chemical modification by anchoring with 2-aminothiazole ligand and Pd(II) ion sorption, aiming to maximize the photocatalytic activity. The material was characterized by diffuse reflectance infrared Fourier transform spectroscopy, ultraviolet and visible spectrometry, X-ray diffractometry, and scanning electronic microscopy. The amount of palladium adsorbed on the film's surface, determined by graphite furnace atomic absorption spectrometry, showed a value of 2.69 x 10(16) atoms CM-2. The photocatalytic tests indicated that the functionalization with 2-aminothiazole and the adsorption of palladium (II) were determinants in the semiconductor's enhanced photocatalytic activity. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A narrow S-wave resonance has been found in the positron-helium system at about 30 eV, using the close-coupling approach, in excitation and rearrangement cross sections to He(1s2s), He(1s2p), Ps(1s) and Ps(2s) states by employing different combinations of the following basis functions: He(1s1s), He(1s2s), He(1s2p), Ps(1s) and Ps(2s), where Ps stands for the positronium atom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microbiological leaching of chalcopyrite (CuFeS2) is of great interest because of its potential application to many CuFeS2-rich ore materials. However, the efficiency of the microbiological process is very limited because this mineral is one of the most refractory to bacterial attack. Knowledge of bacterial role during chalcopyrite oxidation is very important in order to improve the efficiency of bioleaching operation. The oxidative dissolution of a massive chalcopyrite electrode by Acidithiobacillus ferrooxidans was evaluated by electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM). A massive chalcopyrite electrode was utilized in a Tait-type electrochemical cell in acid medium for different immersion times in the presence or absence of bacterium. The differences observed in the impedance diagrams were correlated with the adhesion process of bacteria on the mineral surface. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two-impurity Anderson model is solved within a effective medium approach. All impurity parameters are modelled via Slater atomic orbitals. Impurity spectral densities and spin correlation functions are readily computed. Results are presented for the zero temperature, half-filled case. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the synthesis and characterization of 2-aminothiazole modified silica gel (SiAT), and the results of a study of the adsorption and pre-concentration (in batch and using a flow-injection system coupled to an absorption atomic spectrometer) of Cu(II), Ni(II) and Pb(II) in aqueous medium. The adsorption capacities for each metal ions in mmol g -1 were: Cu(II)= 1.18, Ni(II)= 1.15 and Pb(II)= 1.10. The results obtained in the flow experiments showed a recovery of practically 100% of the metal ions adsorbed in a mini-column packed with 100 mg of SiAT, using 100 μL of 2.0 mol L -1 HCl solution as eluent. The sorption-desorption of the metal ions made possible the application of a flow-injection system for the pre-concentration and quantification by FAAS of metal ions at trace level in natural water samples digested and not digest by an oxidizing UV photolysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polysaccharicles, as alginate and chitosan, have been used to obtain modified release dosage forms. Alginate, due to its property of building gels during the complex formation with calcium ions, allows the building of capsules containing a core constituted by calcium alginate. This work had for objective to determine the appropriate calcium concentration for the preparation of alginate-chitosan capsules, by means of calcium quantification using atomic absorption spectrophotometry. The methodology of calcium quantification was validated through analysis of the limit of detection, precision, accuracy and recovery of the method. The capsules, containing or not the drug, were prepared by the complex coacervation/ionotropic gelification method. Calcium was quantified after samples mineralization and dilution in lantanium solution. The results showed that the amount of calcium incorporated into the capsules depends on the amount of calcium added to the medium, and this ratio increases until the concentration of 1.5% of initial calcium chloride and above this concentration there is a decrease in the proportion of calcium bonded. It was observed that the proportion of calcium that links to the polymer is inversely proportional to the amount of calcium added. The calcium amount incorporated depends on the concentration of the polymeric dispersions used as well as on the ratio between the two polymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon-supported Pd, Au and bimetallic PdAu (Pd:Au 90:10, 50:50 and 30:70 atomic ratios) electrocatalysts were prepared using electron beam irradiation. The obtained materials were characterized by energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their catalytic activities toward ethanol electro-oxidation were evaluated in an alkaline medium using electrochemical techniques, in situ attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR) analysis and a single alkaline direct ethanol fuel cell (ADEFC). EDX analyses showed that the actual Pd: Au atomic ratios were very similar to the nominal ones. X-ray diffractograms of PdAu/C electrocatalysts evidenced the presence of Pd-rich (fcc) and Au-rich (fcc) phases. TEM analysis showed a homogeneous dispersion of nanoparticles on the carbon support, with an average size in the range of 3-5 nm and broad size distributions. Cyclic voltammetry (CV) and chronoamperometry (CA) experiments revealed the superior ambient activity toward ethanol electro-oxidation of PdAu/C electrocatalysts with Pd: Au ratios of 90:10 and 50:50. In situ ATR-FTIR spectroscopy measurements have shown that the mechanism for ethanol electro-oxidation is dependent on catalyst composition, leading to different reaction products, such as acetaldehyde and acetate, depending on the number of electrons transferred. Experiments on a single ADEFC were conducted between 50 and 900 C, and the best performance of 44 mW cm-2 in 2.0molL-1 ethanol was obtained at 850C for the Pd:Au 90:10 catalysts. This superior performance is most likely associated with enhancement of ethanol adsorption on Pd, oxidation of the intermediates, the presence of gold oxide-hydroxyl species, low mean particle diameters and better distribution of particles on the support. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)