4 resultados para Arrangement design
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study was to compare the chemical composition, in vitro dry matter disappearance (IVDMD) and ruminal degradation of Panicum maximum, J. cv. Tanzania samples obtained by clipping (square method) or extrusa collection (animal selection). In the in situ trial, three ruminal fistulated dry crossbred cows, with 499 kg LW, were used in a completely randomized block design with split-plot arrangement design. Five grams of clipped (+/- 2 cm) grass or extrusa samples were placed in nylon bags (7 x 14 cm) and rumen incubated during 3, 6, 12, 24, 48, 96 and 120 hours. The IVDMD and the CP, NDF and ADF content were, respectively, 55.8, 7.6, 81.9 e 43.6%, for the clipped grass and .66.5, 12.1, 78.8 e 39.5%, for the extrusa samples. The potential degradability of DM, C P, NDF and ADF were 62.59, 80.88, 50.73 and 46.65%, for clipped grass; and 79.53, 90.97, 71.21 and 65.68%, for extrusa samples. The quality of the selected animal diet (extrusa) was better than the available forage in terms of IVDMD and chemical composition (high protein and low fiber content). In situ degradability trials carried out with clipped samples, and non selected by animal, could not supply reliable results closed to the animal diet.
Resumo:
Cogeneration system design deals with several parameters in the synthesis phase, where not only a thermal cycle must be indicated but the general arrangement, type, capacity and number of machines need to be defined. This problem is not trivial because many parameters are considered as goals in the project. An optimization technique that considers costs and revenues, reliability, pollutant emissions and exergetic efficiency as goals to be reached in the synthesis phase of a cogeneration system design process is presented. A discussion of appropriated values and the results for a pulp and paper plant integration to a cogeneration system are shown in order to illustrate the proposed methodology.
Resumo:
Cogeneration system design deals with several parameters in the synthesis phase, where not only a thermal cycle must be indicated but the general arrangement, type, capacity and number of machines need to be defined. This problem is not trivial because many parameters are considered as goals in the project. An optimization technique that considers costs and revenues, reliability, pollutant emissions and exergetic efficiency as goals to be reached in the synthesis phase of a cogeneration system design process is presented. A discussion of appropriated values and the results for a pulp and paper plant integration to a cogeneration system are shown in order to illustrate the proposed methodology.