313 resultados para Apis mellifera bees
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Venom of the honey bee Apis mellifera induced a protective effect against the induction of dicentric chromosomes by gamma radiation (2.0 Gy) in human peripheral blood lymphocytes which the cultures were treated with 0.00015 mul venom/1 ml medium 6 h before irradiation. In cultures to which the venom was added immediately before irradiation with 0.25, 1.0 and 2.0 Gy, no significant differences in number of dicentric chromosomes induced was observed when compared to cultures submitted to irradiation only. The venom did not induce clastogenic effects nor did it increase the frequency of sister chromatid exchanges.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Agrochemicals on crop cultivated areas is a source of contamination for bees and may cause physiological and behavioral disorders and mortality. The LD50 of the pesticides fipronil and imidacloprid was determined and their effect on the learning behavior of Apis mellifera L. honeybee evaluated. LD50 was determined by the ingestion of contaminated food with different concentrations of insecticide concentrations: Fipronil (0, 0.8, 0.4, 0.2, 0.1 and 0.05 µg bee-1) and imidacloprid (0, 0.4, 0.2, 0.1, 0.05 and 0.025 µg bee-1). The method of proboscis extension reflection (PER) and learning through citral odor evaluated their responses to food stimulation. LD50 obtained were 0.28 ± 0.11 and 0.10 ± 0.04 µg bee-1 for fipronil and imidacloprid, respectively. The PER test showed no significant difference (p < 0.05) although agrochemicals affected the learning of bees. Insecticides fipronil and imidacloprid are extremely harmful to foraging Africanized Apis mellifera bees.
Resumo:
Pós-graduação em Zootecnia - FMVZ
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The technique of osmium imidazol for the ultrastructural detection of lipids in the secretory cells of the venom gland of 14-days old worker bees of Apis mellifera L. demonstrated the presence of these components at various sites of the gland. These lipids were found mainly associated to the external region of the basal lamina and the microvilli, in the intercellular spaces, in the cuticle of the collecting canaliculi and in the secretion contained in the glandular lumen. Therefore, in addition to revealing the presence of lipids in the secretion, this technique also allowed us to attribute an exogenous origin to the lipids in the secretion; they are taken up from the haemolymph.
Resumo:
In Apis mellifera the acid or venom gland is composed of secretory cells that surround a channel that opens into a reservoir devoid of musculature. This gland can at times present apical branching. In this study we recorded the frequency of branched venom glands in workers of Africanized bees (Apis mellifera Linnaeus) from six localities in the Pantanal region of Mato Grosso do Sul, and analyzed the relation among the length of the main duct, the length of the duct from the reservoir to the beginning of branching, the length of the branched segment (when present) and the total length of the gland. We sought to determine the probable genotypes of the bees from each population by using the model proposed by Alves-Junior. The frequency of branched glands varied from 50% to 83% in the worker bees coming from those places, indicating that this characteristic is primitive in these bees. The results of the Analysis of Discriminant Functions indicated significant differences in the morphometrical segments of the venom gland (Wilk's Lambda = 0.065; F-(27,F-30) = 4.507; P < 0.001), and permitted a differentiation of the populations studied. The genotypes inferred for the bees of each locality agree with the results obtained in the Analysis of Discriminant Functions and form three distinct groups, with some overlapping areas among them. In all of the populations considered the phenotype largevenom gland was predominant. It is inferred that bees with this phenotype (venom gland larger than S. 15 mm) have Gm(1) Gm(1) genotype, being therefore homozygotes for the major alleles and also for the modifier genes that codify this morphological trait. The high frequency of worker bees with large venom gland in all the places considered makes viable the development of a selection program in order to obtain bees with longer venom glands, aimed at the commercial production of venom by the beekeepers of the Pantanal region of Mato Grosso do Sul.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present paper aimed at testing the action of non-lyophilized venom of Africanized bees Apis mellifera through topical applications on Diatraea saccharalis egg masses. The CL50, DL50 and the most susceptible age of eggs to the venom topic application were also determined. Three-day-old eggs were the most susceptible to the venom action with CL50 equal to 8.6 mg/ml and DL50 equal to 0.173 mg/mass. The venom loses its action after being stored for 15 days.
Resumo:
The correspondence between morphometric and isozymic geographic variation patterns of Africanized honey bees in Brazil was analyzed. Morphometric data consisted of mean vectors of 19 wing traits measured in 42 local populations distributed throughout the country. Isozymic data refer to allelic frequencies of malate dehydrogenase (MDH), and were obtained from Lobo and Krieger. The two data sets were analyzed through canonical trend surface, principal components and spatial autocorrelation analyses, and showed north-south dines, demonstrating that Africanized honey bees in southern and southeastern Brazil are more similar to European honey bees than those found in northern and northeastern regions. Also, the morphometric variation is within the limits established by the racial admixture model, considering the expected values of Africanized honey bee fore wing length (WL) in southern and northeastern regions of Brazil, estimated by combining average values of WL in the three main subspecies involved in the Africanization process (Apis mellifera scutellata, A. m. ligustica and A. m. mellifera) with racial admixture coefficients.