3 resultados para Antilock brake systems.

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a proposal to redesign a physical therapy device for patients with quadriplegia, called parapodium. With the help of the Association of Parents and Exceptional Friends of Guaratinguetá, it was possible to know the currently used device and from this it was conceived changes, allowing the increase of freedom of its central portion, in the down and across positions with mechanical drive . This adaptation is to introduce improvements in the routine of physical therapy professionals and reduce ergonomic problems resulting from repetitive strain during the transfer of patients to the parapodium. In addition to providing greater security for patients who require the use of this equipment. The proposed device comprises: wheel, gearbox and brake systems used for actuation, allowing a degree of turning of the rear post, along an axis which is fixed to the gearbox and the rear structure that permits posterior movement. The mechanism allows the rear post rotate from 0 ° to 90 °. The estimated cost to make the proposal is lower than the marketed parapodiuns, reaching the device's functional expectations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advantages offered by the electronic component light emitting diode ( LED) have caused a quick and wide application of this device in replacement of incandescent lights. However, in its combined application, the relationship between the design variables and the desired effect or result is very complex and it becomes difficult to model by conventional techniques. This work consists of the development of a technique, through artificial neural networks, to make possible to obtain the luminous intensity values of brake lights using LEDs from design data. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advantages offered by the electronic component LED (Light Emitting Diode) have caused a quick and wide application of this device in replacement of incandescent lights. However, in its combined application, the relationship between the design variables and the desired effect or result is very complex and it becomes difficult to model by conventional techniques. This work consists of the development of a technique, through artificial neural networks, to make possible to obtain the luminous intensity values of brake lights using LEDs from design data.