102 resultados para Antigen presentation

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antineoplastic chemotherapeutic agents may indirectly activate dendritic cells (DCs) by inducing the release of danger signals from dying tumor cells. Whereas the direct cytotoxic or inhibitory effect of conventional chemotherapy on DCs has been reported, modulation of DC function by chemotherapeutic agents in low noncytotoxic concentrations has not yet been investigated. We have tested the effects of different classes of antineoplastic chemotherapeutic agents used in low noncytotoxic concentrations on the Ag-presenting function of DCs. We revealed that paclitaxel, doxorubicin, mitomycin C, and methotrexate up-regulated the ability of DCs to present Ags to Ag-specific T cells. Stimulation of DC function was associated with the up-regulation of expression of Ag-processing machinery components and costimulatory molecules on DCs, as well as increased IL-12p70 expression. However, the ability of DCs treated with paclitaxel, methotrexate, doxorubicin, and vinblastine to increase Ag presentation to Ag-specific T cells was abolished in DCs generated from IL-12 knockout mice, indicating that up-regulation of Ag presentation by DCs is IL-12-dependent and mediated by the autocrine or paracrine mechanisms. At the same time, IL-12 knockout and wild-type DCs demonstrated similar capacity to up-regulate OVA presentation after their pretreatment with low concentrations of mitomycin C and vincristine, suggesting that these agents do not utilize IL-12-mediated pathways in DCs for stimulating Ag presentation. These findings reveal a new mechanism of immunopotentiating activity of chemotherapeutic agents-a direct immunostimulatory effect on DCs (chemomodulation)-and thus provide a strong rationale for further assessment of low-dose chemotherapy given with DC vaccines for cancer treatment. The Journal of Immunology, 2009, 183: 137-144.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agrin is over-expressed by activated and autoimmune T cells, and synergizes with the T cell receptor (TCR) to augment cell activation. In the present study, we show that Agrin accumulates to distinct areas of the plasma membrane and that cell activation causes its redistribution. During antigen presentation, Agrin primarily accumulates to the periphery of the mature immunological synapse, mostly in lamellipodia-like protrusions that wrap around the antigen-presenting cell and, conversely, anti-Agrin sera induced a significant redistribution of TCR at the plasma membrane. We also provide evidence for the expression of Agrin receptors in peripheral blood monocytes, dendritic cells and a fraction of B cells. Interestingly, interferon-a treatment, which induces the expression of Agrin in T cells, also augmented Agrin binding to monocytes. Stimulation of monocytes with recombinant Agrin induced the clustering of surface receptors, including major histocompatibility complex class II, activation of intracellular signalling cascades, as well as enhanced dsRNA-induced expression of pro-inflammatory cytokines interleukin-6 and tumour necrosis factor-a. Collectively, these results confirm the location of Agrin at the immunological synapse between T cells and antigen-presenting cells and justify further characterization of its receptors in the immune system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8 [HHV8]) and Epstein-Barr virus (EBV/HHV4) are distantly related gammaherpesviruses causing tumors in humans. KSHV latency-associated nuclear antigen 1 (LANA1) is functionally similar to the EBV nuclear antigen-1 (EBNA1) protein expressed during viral latency, although they have no amino acid similarities. EBNA1 escapes cytotoxic lymphocyte (CTL) antigen processing by inhibiting its own proteosomal degradation and retarding its own synthesis to reduce defective ribosomal product processing. We show here that the LANA1 QED-rich central repeat (CR) region, particularly the CR2CR3 subdomain, also retards LANA1 synthesis and markedly enhances LANA1 stability in vitro and in vivo. LANA1 isoforms have half-lives greater than 24 h, and fusion of the LANA1 CR2CR3 domain to a destabilized heterologous protein markedly decreases protein turnover. Unlike EBNA1, the LANA1 CR2CR3 subdomain retards translation regardless of whether it is fused to the 5′ or 3′ end of a heterologous gene construct. Manipulation of sequence order, orientation, and composition of the CR2 and CR3 subdomains suggests that specific peptide sequences rather than RNA structures are responsible for synthesis retardation. Although mechanistic differences exist between LANA1 and EBNA1, the primary structures of both proteins have evolved to minimize provoking CTL immune responses. Simple strategies to eliminate these viral inhibitory regions may markedly improve vaccine effectiveness by maximizing CTL responses. Copyright © 2007, American Society for Microbiology. All Rights Reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The major histocompatibility complex (MHC) contains a set of genes necessary for antigen presentation in the immune system. This gene dense and polymorphic region of the mammalian genome is of considerable interest due to the role of MHC genes in immune function and animal health. Previous cytogenetic studies have indicated that the MHC in river buffalo resides on the short arm of chromosome 2 (BBU2). A 5000-rad radiation hybrid mapping panel was recently generated to enable construction of a whole genome map of river buffalo. To this and, the aims of this project were to elucidate the general organization of the MHC on BBU2, and to compare gene order within this region to the MHC in cattle. PCR primers were selected from the bovine gene map and used with the BBURH(5000) panel to map a set of ten MHC class 11 genes in river buffalo. Analysis indicates that these genes fall into two linkage groups, consistent with organization of the MHC in cattle. This comparison of buffalo and bovine MHC gene order provides the first insight into the organization of the MHC on river buffalo chromosome 2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cathorops spixii is one of the most abundant venomous fish of the southeastern coast of the State of São Paulo, and consequently causes a great part of the accidents seen there. The accidents affect mainly fishermen, swimmers and tourists and are characterized by punctiform or wide wounds, erythema, edema, pain, sudoresis, indisposition, fever, nausea, vomiting and secondary infection. The objective of this work was to characterize the inflammatory response induced in mice by both venoms (mucus and sting) of the catfish C spixii. Our results demonstrated that both venoms induced a great number of rolling and adherent leukocytes in the post-capillary venules of cremaster muscle of mice, and an increase in the vascular permeability in peritoneal cavity. Mucus induced the recruitment of neutrophils immediately after injection followed later by macrophage infiltration. In contrast, the cellular infiltration elicited by sting venom was rapidly resolved. The peritonitis reaction provoked by venoms was characterized by cytokine (IL-6), chemokines (MCP-1 and KC) or lipid mediator (LTB4) production in the peritoneal cavity. The macrophages from 7-day mucus venom-induced exudates upon in vitro mucus venom stimulation, expressed CD1 Ic x MHC class II and release bioactive IL-12p70. on the other hand, sting venom-elicited peritoneal macrophages lost the ability to differentiate into dendritic cells, following re-stimulation in vitro with sting venom, they do not express CD11c, nor do they exhibit sufficient levels of MHC class II. In conclusion, both types of venoms (mucus or sting) promote inflammatory reaction with different profiles, and the inflammatory reaction induced by the first was characterized by antigen persistence in peritoneal cavity that allowed the activation of phagocytic cells with capacity of antigenic presentation. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Kaposi-associated Herpesvirus (KSHV) also known as Human Herpesvirus 8 (HHV-8) is associated with the development of Kaposi’s sarcoma (KS) and others limphoprolipheratives diseases such as Primary Effusion Lymphoma (PEL) and Multicentric Castleman Disease (MCD). Even though the virus is considered lymphotropic, it is able to infect others cell types such as macrophages, dendritic cells, endothelial cells, monocytes and fibroblasts. After infection, KSHV be latent expressing essential viral genes to its maintenance in a infected cell. However, in some circumstances may occur the reactivation of lytic cycle producing new viral particles. K1 protein of KSHV interferes in the cellular signaling inducing proliferation and supporting cellular transformation. K1 is encoded by viral ORF-K1, which shows high variability between different genotypes of KSHV. So far, it is not clear whether different isoforms of K1 have specific immunobiological features. The KSHV latency is maintained under strict control by the immune system supported by an adequate antigen presentation involving Human Leucocyte Antigen (HLA) class I and II. Polymorphisms of HLA class I and II genes confer an enormous variability in molecules that recognize a large amount of antigens, but also can increase the susceptibility to autoimmune diseases. Therefore, the present study aims to genotype HLA class I (A and B) and class II (DR and DQ) from volunteers to identify haplotypes that can provide better response to K1 epitopes of different KSHV genotypes. First of all, 20 volunteers were selected to genotype HLA genes. In our results we observed prevalence of certain HLA class I haplotypes as HLAA1, HLA-A2, HLA-A24, HLA-A26, HLA-B8, HLA-B18 e HLA-B44. After the in silico analysis using BIMAS and SYFPEITHI databases, we observed high scores for epitopes from the B genotype of KSHV, indicating...(Complete abstract click electronic access below)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente trabalho estudou um ensaio imunoenzimático (ELISA) indireto para a detecção de anticorpos anti-Babesia canis no soro de cães, tendo a Reação de Imunofluorescência Indireta (RIFI), como teste de referência O antígeno utilizado no ELISA do presente estudo consistiu em uma preparação antigênica solúvel de merozoítas B. canis e as diluições ótimas do antígeno, soros e conjugado foram determinadas por titulação em bloco, utilizando soros de referência positivos e negativos. A preparação antigênica solúvel de B. canis ótima foi de 10 µg.mL-1, com soros de referência positivos e negativos em uma única diluição de 1:100, e conjugado a 1:4.000. Um total de 246 amostras séricas foram colhidas em cães, durante a campanha de vacinação anti-rábica em Jaboticabal, São Paulo, Brasil e a presença de anticorpos anti-B. canis foi avaliada pelo ELISA e RIFI. Nestas condições, a média de absorbância dos soros de referência negativos foi de 0,129 ± 0,025, resultando em um ponto de corte de 0,323 (Nível de ELISA 3) e a média da absorbância dos soros de referência positivos foi de 2,156 ± 1,187. As amostras com sorologia positiva para B. canis por ELISA e RIFI foram 67,89% (n = 167) e 59,35% (n = 146), respectivamente. Os resultados obtidos sugerem que o ELISA descrito revelou-se um teste sorológico eficaz no diagnóstico da babesiose canina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The obtainment of transgenic edible plants carrying recombinant antigens is a desired issue in search for economic alternatives viewing vaccine production. Here we report a strategy for genetic transformation of lettuce plants (Lactuca sativa L.) using the surface antigen HBsAg of hepatitis B virus. Transgenic lettuce seedlings were obtained through the application of a regulated balance of plant growth regulators. Genetic transformation process was acquired by cocultivation of cotyledons with Agrobacterium tumefaciens harboring the recombinant plasmid. It is the first description of a lettuce Brazilian variety Vitória de Verão genetically modified.