3 resultados para Antarctic region
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The present review is a critical analysis of positive and negative reports of the isolation of Paracoccidioides brasiliensis from soil. The strains isolated from soil or soil-contaminated material (dogfood, penguin feces) by Batista et al. in Recife, Brazil, Negroni in the Argentinian Chaco, Albornoz in rural Venezuela, Silva-Vergara et al, in Ibia, Brazil, Ferreira et al, in Uberlandia, Brazil, and Gezuele et al. at the Uruguayan base in the Antarctic region, presented mycological characteristics consistent with P. brasiliensis. In most of these studies, morphological characterization was complemented with an evaluation of virulence and antigenicity, and biochemical or molecular analysis. These isolations, therefore, can be considered true, supporting the concept of soil as an important element in the ecology of the pathogen. The large number of negative reports in attempts involving soil samples and the low repeatability of isolation of the fungus from the same area indicate that the specific conditions supporting growth of the pathogen in soil have not been fully clarified.
Resumo:
É estudada a distribuição geográfica e a variação de caracteres morfológicos de três espécies de ofiuroides (OpiLacantha antartica, Astrotoma agassizzi e Gorgonecephalus chilensis) das regiões Antártica e Subantãrtica. São também apresentadas observações sobre biologia reprodutiva.
Resumo:
Polar Regions are the most important soil carbon reservoirs on Earth. Monitoring soil carbon storage in a changing global climate context may indicate possible effects of climate change on terrestrial environments. In this regard, we need to understand the dynamics of soil organic matter in relation to its chemical characteristics. We evaluated the influence of chemical characteristics of humic substances on the process of soil organic matter mineralization in selected Maritime Antarctic soils. A laboratory assay was carried out with soils from five locations from King George Island. We determined the contents of total organic carbon, oxidizable carbon fractions of soil organic matter, and humic substances. Two in situ field experiments were carried out during two summers, in order to evaluate the CO2-C emissions in relation to soil temperature variations. The overall low amounts of soil organic matter in Maritime Antarctic soils have a low humification degree and reduced microbial activity. CO2-C emissions showed significant exponential relationship with temperature, suggesting a sharp increase in CO2-C emissions with a warming scenario, and Q10 values (the percentage increase in emission for a 10°C increase in soil temperature) were higher than values reported from elsewhere. The sensitivity of the CO2-C emission in relation to temperature was significantly correlated with the humification degree of soil organic matter and microbial activity for Antarctic soils. © 2012 Antarctic Science Ltd.