70 resultados para Annular billiard
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We study the phenomenon of unlimited energy growth for a classical particle moving in the annular billiard. The model is considered under two different geometrical situations: static and breathing boundaries. We show that when the dynamics is chaotic for the static case, the introduction of a time-dependent perturbation allows that the particle experiences the phenomenon of Fermi acceleration even when the oscillations are periodic.
Resumo:
A simplified version of a time-dependent annular billiard is studied. The dynamics is described using nonlinear maps and we consider two different configurations for the billiard, namely (i) concentric and (ii) eccentric cases. For the concentric case and for a null angular momentum, we confirm that the results for the Fermi-Ulam model are recovered and the particle does not experience the phenomenon of Fermi acceleration. However, on the eccentric case the particle demonstrates unlimited energy gain and Fermi acceleration is therefore observed.
Resumo:
We study the statistical distribution of quantum energy splittings due to a dynamical tunneling. The system. The annular billiard, has whispering quasimodes due to a discrete symmetry that exists even when chaos is present in the underlying classical dynamics. Symmetric and antisymmetric combinations of these quasimodes correspond to quantum doublet states whose degeneracies decrease as the circles become more eccentric. We construct numerical ensembles composed of splittings for two distinct regimes, one which we call semiclassical for high quantum numbers and high energies where the whispering regions are connected by chaos, and other which we call quantal for low quantum numbers, low energies, and near integrable where dynamical tunneling is not a dominant mechanism. In both cases we observe a variation on the fluctuation amplitudes, but their mean behaviors follow the formula of Leyvraz and Ullmo [J. Phys. A 29, 2529 (1996)]. A description of a three-level collision involving a doublet and a singlet is also provided through a numerical example.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Some properties of the annular billiard under the presence of weak dissipation are studied. We show, in a dissipative system, that the average energy of a particle acquires higher values than its average energy of the conservative case. The creation of attractors, associated with a chaotic dynamics in the conservative regime, both in appropriated regions of the phase space, constitute a generic mechanism to increase the average energy of dynamical systems.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we present a set of generic results on Hamiltonian non-linear dynamics. We show the necessary conditions for a Hamiltonian system to present a non-twist scenario and from that we introduce the isochronous resonances. The generality of these resonances is shown from the Hamiltonian given by the Birkhof-Gustavson normal form, which can be considered a toy model, and from an optic system governed by the non-linear map of the annular billiard. We also define a special kind of transport barrier called robust torus. The meanders and shearless curves are also presented and we show the most robust shearless barrier associated with the rotation numbers.
Resumo:
The main idea of this work is to understand and analyze the dynamical aspects of the motion of a particle moving in the annular billiard, which corresponds to two circles of radius R and r (r