7 resultados para Ann mass flux

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Particle size distributions for soluble and insoluble species in Mt. Etna's summit plumes were measured across an extended size range (10 nm < d < 100 mu m) using a combination of techniques. Automated scanning electron microscopy (QEMSCAN) was used to chemically analyze many thousands of insoluble particles (collected on pumped filters) allowing the relationships between particle size, shape, and composition to be investigated. The size distribution of fine silicate particles (d < 10 mu m) was found to be lognormal, consistent with formation by bursting of gas bubbles at the surface of the magma. The compositions of fine silicate particles were found to vary between magmatic and nearly pure silica; this is consistent with depletion of metal ions by reactions in the acidic environment of the gas plume and vent. Measurements of the size, shape and composition of fine silicate particles may potentially offer insights into preemission, synemission, and postemission processes. The mass flux of fine silicate particles from Mt. Etna released during noneruptive volcanic degassing in 2004 and 2005 was estimated to be similar to 7000 kg d(-1). Analysis of particles in the range 0.1 < d/mu m < 100 by ion chromatography shows that there are persistent differences in the size distributions of sulfate aerosols between the two main summit plumes. Analysis of particles in the range 0.01 mu m < d < 0.1 mu m by scanning transmission electron microscopy (STEM) shows that there are significant levels of nanoparticles in the Mt. Etna plumes although their compositions remain uncertain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the TROCCINOX field experiment in January and February 2005, the contribution of lightning-induced nitrogen oxides (LNOx) from tropical and subtropical thunderstorms in Southern Brazil was investigated. Airborne trace gas measurements (NO, NOy, CO and O-3) were performed up to 12.5 km with the German research aircraft Falcon. During anvil penetrations in selected tropical and subtropical thunderstorms of 4 and 18 February, NOx mixing ratios were on average enhanced by 0.7-1.2 and 0.2-0.8 nmol mol(-1) totally, respectively. The relative contributions of boundary layer NOx (BL-NOx) and LNOx to anvil-NOx were derived from the NOx-CO correlations. on average similar to 80-90% of the anvil-NOx was attributed to LNOx. A Lightning Location Network (LINET) was set up to monitor the local distribution of cloud-to-ground (CG) and intra-cloud (IC) radiation sources (here called 'strokes') and compared with lightning data from the operational Brazilian network RINDAT (Rede Integrada Nacional de Deteccao de Descargas Atmosfericas). The horizontal LNOx mass flux out of the anvil was determined from the mean LNOx mixing ratio, the horizontal outflow velocity and the size of the vertical cross-section of the anvil, and related to the number of strokes contributing to LNOx. The values of these parameters were derived from the airborne measurements, from lightning and radar observations, and from a trajectory analysis. The amount of LNOx produced per LINET stroke depending on measured peak current was determined. The results were scaled up with the Lightning Imaging Sensor (LIS) flash rate (44 flashes s(-1)) to obtain an estimate of the global LNOx production rate. The final results gave similar to 1 and similar to 2-3 kg(N) per LIS flash based on measurements in three tropical and one subtropical Brazilian thunderstorms, respectively, suggesting that tropical flashes may be less productive than subtropical ones. The equivalent mean annual global LNOx nitrogen mass production rate was estimated to be 1.6 and 3.1 Tg a(-1), respectively. By use of LINET observations in Germany in July 2005, a comparison with the lightning activity in mid-latitude thunderstorms was also performed. In general, the same frequency distribution of stroke peak currents as for tropical thunderstorms over Brazil was found. The different LNOx production rates per stroke in tropical thunderstorms compared with subtropical and mid-latitude thunderstorms seem to be related to the different stroke lengths (inferred from comparison with laboratory data and observed lengths). In comparison, the impact of other lightning parameters as stroke peak current and stroke release height was assessed to be minor. The results from TROCCINOX suggest that the different vertical wind shear may be responsible for the different stroke lengths.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heat-transfer studies were carried out in a packed bed of glass beads, cooled by the wall, through which air percolated. Tube-to-particle diameter ratios (D/dp) ranged from 1.8 to 55, while the air mass flux ranged from 0.204 to 2.422 kg/m2·s. The outlet bed temperature (TL) was measured by a brass ring-shaped sensor and by aligned thermocouples. The resulting radial temperature profiles differed statistically. Angular temperature fluctuations were observed through measurements made at 72 angular positions. These fluctuations do not follow a normal distribution around the mean for low ratios D/dp. The presence of a restraining screen, as well as the increasing distance between the temperature measuring device and the bed surface, distorts TL. The radial temperature profile at the bed entrance (T0) was measured by a ring-shaped sensor, and T 0 showed to be a function of the radial position, the particle diameter, and the fluid flow rate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite its importance for designing evaporators and condensers, a review of the literature shows that heat transfer data during phase change of carbon dioxide is very limited, mainly for microchannel flows. In order to give a contribution on this subject, an experimental study of CO 2 evaporation inside a 0.8 mm-hydraulic diameter microchannel was performed in this work. The average heat transfer coefficient along the microchannel was measured and visualization of the flow patterns was conducted. A total of 67 tests were performed at saturation temperature of 23.3°C for a heat flux of 1800 W/(m2°C). Vapor qualities ranged from 0.005 to 0.88 and mass flux ranged from 58 to 235 kg/(m2s). An average heat transfer coefficient of 9700 W/(m2°C) with a standard deviation of 35% was obtained. Nucleate boiling was found to characterize the flow regime for the test conditions. The dryout of the flow, characterized by the sudden reduction in the heat transfer coefficient, was identified at vapor qualities around 0.85. Flow visualization results showed three flow patterns. For low vapor qualities (up to about 0.25), plug flow was predominant, while slug flow occurred at moderated vapor qualities (from about 0.25 to 0.50). Annular flow was the flow pattern for higher vapor qualities. Copyright © 2006 by ABCM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)